// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Utilities for formatting and printing strings #![allow(unused_variables)] use any; use cell::{Cell, Ref, RefMut}; use iter::{Iterator, IteratorExt, range}; use kinds::{Copy, Sized}; use mem; use option::Option; use option::Option::{Some, None}; use ops::{Deref, FnOnce}; use result::Result::{Ok, Err}; use result; use slice::SliceExt; use slice; use str::StrPrelude; pub use self::num::radix; pub use self::num::Radix; pub use self::num::RadixFmt; mod num; mod float; pub mod rt; #[experimental = "core and I/O reconciliation may alter this definition"] /// The type returned by formatter methods. pub type Result = result::Result<(), Error>; /// The error type which is returned from formatting a message into a stream. /// /// This type does not support transmission of an error other than that an error /// occurred. Any extra information must be arranged to be transmitted through /// some other means. #[experimental = "core and I/O reconciliation may alter this definition"] pub struct Error; impl Copy for Error {} /// A collection of methods that are required to format a message into a stream. /// /// This trait is the type which this modules requires when formatting /// information. This is similar to the standard library's `io::Writer` trait, /// but it is only intended for use in libcore. /// /// This trait should generally not be implemented by consumers of the standard /// library. The `write!` macro accepts an instance of `io::Writer`, and the /// `io::Writer` trait is favored over implementing this trait. #[experimental = "waiting for core and I/O reconciliation"] pub trait FormatWriter { /// Writes a slice of bytes into this writer, returning whether the write /// succeeded. /// /// This method can only succeed if the entire byte slice was successfully /// written, and this method will not return until all data has been /// written or an error occurs. /// /// # Errors /// /// This function will return an instance of `FormatError` on error. fn write(&mut self, bytes: &[u8]) -> Result; /// Glue for usage of the `write!` macro with implementers of this trait. /// /// This method should generally not be invoked manually, but rather through /// the `write!` macro itself. fn write_fmt(&mut self, args: &Arguments) -> Result { write(self, args) } } /// A struct to represent both where to emit formatting strings to and how they /// should be formatted. A mutable version of this is passed to all formatting /// traits. #[unstable = "name may change and implemented traits are also unstable"] pub struct Formatter<'a> { flags: uint, fill: char, align: rt::Alignment, width: Option, precision: Option, buf: &'a mut (FormatWriter+'a), curarg: slice::Items<'a, Argument<'a>>, args: &'a [Argument<'a>], } // NB. Argument is essentially an optimized partially applied formatting function, // equivalent to `exists T.(&T, fn(&T, &mut Formatter) -> Result`. enum Void {} /// This struct represents the generic "argument" which is taken by the Xprintf /// family of functions. It contains a function to format the given value. At /// compile time it is ensured that the function and the value have the correct /// types, and then this struct is used to canonicalize arguments to one type. #[experimental = "implementation detail of the `format_args!` macro"] pub struct Argument<'a> { value: &'a Void, formatter: fn(&Void, &mut Formatter) -> Result, } impl<'a> Argument<'a> { #[inline(never)] fn show_uint(x: &uint, f: &mut Formatter) -> Result { Show::fmt(x, f) } fn new<'b, T>(x: &'b T, f: fn(&T, &mut Formatter) -> Result) -> Argument<'b> { unsafe { Argument { formatter: mem::transmute(f), value: mem::transmute(x) } } } fn from_uint(x: &uint) -> Argument { Argument::new(x, Argument::show_uint) } fn as_uint(&self) -> Option { if self.formatter as uint == Argument::show_uint as uint { Some(unsafe { *(self.value as *const _ as *const uint) }) } else { None } } } impl<'a> Copy for Argument<'a> {} impl<'a> Arguments<'a> { /// When using the format_args!() macro, this function is used to generate the /// Arguments structure. #[doc(hidden)] #[inline] #[experimental = "implementation detail of the `format_args!` macro"] pub fn new(pieces: &'a [&'a str], args: &'a [Argument<'a>]) -> Arguments<'a> { Arguments { pieces: pieces, fmt: None, args: args } } /// This function is used to specify nonstandard formatting parameters. /// The `pieces` array must be at least as long as `fmt` to construct /// a valid Arguments structure. Also, any `Count` within `fmt` that is /// `CountIsParam` or `CountIsNextParam` has to point to an argument /// created with `argumentuint`. However, failing to do so doesn't cause /// unsafety, but will ignore invalid . #[doc(hidden)] #[inline] #[experimental = "implementation detail of the `format_args!` macro"] pub fn with_placeholders(pieces: &'a [&'a str], fmt: &'a [rt::Argument<'a>], args: &'a [Argument<'a>]) -> Arguments<'a> { Arguments { pieces: pieces, fmt: Some(fmt), args: args } } } /// This structure represents a safely precompiled version of a format string /// and its arguments. This cannot be generated at runtime because it cannot /// safely be done so, so no constructors are given and the fields are private /// to prevent modification. /// /// The `format_args!` macro will safely create an instance of this structure /// and pass it to a function or closure, passed as the first argument. The /// macro validates the format string at compile-time so usage of the `write` /// and `format` functions can be safely performed. #[stable] pub struct Arguments<'a> { // Format string pieces to print. pieces: &'a [&'a str], // Placeholder specs, or `None` if all specs are default (as in "{}{}"). fmt: Option<&'a [rt::Argument<'a>]>, // Dynamic arguments for interpolation, to be interleaved with string // pieces. (Every argument is preceded by a string piece.) args: &'a [Argument<'a>], } impl<'a> Show for Arguments<'a> { fn fmt(&self, fmt: &mut Formatter) -> Result { write(fmt.buf, self) } } /// When a format is not otherwise specified, types are formatted by ascribing /// to this trait. There is not an explicit way of selecting this trait to be /// used for formatting, it is only if no other format is specified. #[unstable = "I/O and core have yet to be reconciled"] pub trait Show for Sized? { /// Formats the value using the given formatter. fn fmt(&self, &mut Formatter) -> Result; } /// Format trait for the `o` character #[unstable = "I/O and core have yet to be reconciled"] pub trait Octal for Sized? { /// Formats the value using the given formatter. fn fmt(&self, &mut Formatter) -> Result; } /// Format trait for the `b` character #[unstable = "I/O and core have yet to be reconciled"] pub trait Binary for Sized? { /// Formats the value using the given formatter. fn fmt(&self, &mut Formatter) -> Result; } /// Format trait for the `x` character #[unstable = "I/O and core have yet to be reconciled"] pub trait LowerHex for Sized? { /// Formats the value using the given formatter. fn fmt(&self, &mut Formatter) -> Result; } /// Format trait for the `X` character #[unstable = "I/O and core have yet to be reconciled"] pub trait UpperHex for Sized? { /// Formats the value using the given formatter. fn fmt(&self, &mut Formatter) -> Result; } /// Format trait for the `p` character #[unstable = "I/O and core have yet to be reconciled"] pub trait Pointer for Sized? { /// Formats the value using the given formatter. fn fmt(&self, &mut Formatter) -> Result; } /// Format trait for the `e` character #[unstable = "I/O and core have yet to be reconciled"] pub trait LowerExp for Sized? { /// Formats the value using the given formatter. fn fmt(&self, &mut Formatter) -> Result; } /// Format trait for the `E` character #[unstable = "I/O and core have yet to be reconciled"] pub trait UpperExp for Sized? { /// Formats the value using the given formatter. fn fmt(&self, &mut Formatter) -> Result; } static DEFAULT_ARGUMENT: rt::Argument<'static> = rt::Argument { position: rt::ArgumentNext, format: rt::FormatSpec { fill: ' ', align: rt::AlignUnknown, flags: 0, precision: rt::CountImplied, width: rt::CountImplied, } }; /// The `write` function takes an output stream, a precompiled format string, /// and a list of arguments. The arguments will be formatted according to the /// specified format string into the output stream provided. /// /// # Arguments /// /// * output - the buffer to write output to /// * args - the precompiled arguments generated by `format_args!` #[experimental = "libcore and I/O have yet to be reconciled, and this is an \ implementation detail which should not otherwise be exported"] pub fn write(output: &mut FormatWriter, args: &Arguments) -> Result { let mut formatter = Formatter { flags: 0, width: None, precision: None, buf: output, align: rt::AlignUnknown, fill: ' ', args: args.args, curarg: args.args.iter(), }; let mut pieces = args.pieces.iter(); match args.fmt { None => { // We can use default formatting parameters for all arguments. for _ in range(0, args.args.len()) { try!(formatter.buf.write(pieces.next().unwrap().as_bytes())); try!(formatter.run(&DEFAULT_ARGUMENT)); } } Some(fmt) => { // Every spec has a corresponding argument that is preceded by // a string piece. for (arg, piece) in fmt.iter().zip(pieces.by_ref()) { try!(formatter.buf.write(piece.as_bytes())); try!(formatter.run(arg)); } } } // There can be only one trailing string piece left. match pieces.next() { Some(piece) => { try!(formatter.buf.write(piece.as_bytes())); } None => {} } Ok(()) } impl<'a> Formatter<'a> { // First up is the collection of functions used to execute a format string // at runtime. This consumes all of the compile-time statics generated by // the format! syntax extension. fn run(&mut self, arg: &rt::Argument) -> Result { // Fill in the format parameters into the formatter self.fill = arg.format.fill; self.align = arg.format.align; self.flags = arg.format.flags; self.width = self.getcount(&arg.format.width); self.precision = self.getcount(&arg.format.precision); // Extract the correct argument let value = match arg.position { rt::ArgumentNext => { *self.curarg.next().unwrap() } rt::ArgumentIs(i) => self.args[i], }; // Then actually do some printing (value.formatter)(value.value, self) } fn getcount(&mut self, cnt: &rt::Count) -> Option { match *cnt { rt::CountIs(n) => Some(n), rt::CountImplied => None, rt::CountIsParam(i) => { self.args[i].as_uint() } rt::CountIsNextParam => { self.curarg.next().and_then(|arg| arg.as_uint()) } } } // Helper methods used for padding and processing formatting arguments that // all formatting traits can use. /// Performs the correct padding for an integer which has already been /// emitted into a byte-array. The byte-array should *not* contain the sign /// for the integer, that will be added by this method. /// /// # Arguments /// /// * is_positive - whether the original integer was positive or not. /// * prefix - if the '#' character (FlagAlternate) is provided, this /// is the prefix to put in front of the number. /// * buf - the byte array that the number has been formatted into /// /// This function will correctly account for the flags provided as well as /// the minimum width. It will not take precision into account. #[unstable = "definition may change slightly over time"] pub fn pad_integral(&mut self, is_positive: bool, prefix: &str, buf: &[u8]) -> Result { use char::Char; use fmt::rt::{FlagAlternate, FlagSignPlus, FlagSignAwareZeroPad}; let mut width = buf.len(); let mut sign = None; if !is_positive { sign = Some('-'); width += 1; } else if self.flags & (1 << (FlagSignPlus as uint)) != 0 { sign = Some('+'); width += 1; } let mut prefixed = false; if self.flags & (1 << (FlagAlternate as uint)) != 0 { prefixed = true; width += prefix.char_len(); } // Writes the sign if it exists, and then the prefix if it was requested let write_prefix = |f: &mut Formatter| { for c in sign.into_iter() { let mut b = [0, ..4]; let n = c.encode_utf8(&mut b).unwrap_or(0); try!(f.buf.write(b[..n])); } if prefixed { f.buf.write(prefix.as_bytes()) } else { Ok(()) } }; // The `width` field is more of a `min-width` parameter at this point. match self.width { // If there's no minimum length requirements then we can just // write the bytes. None => { try!(write_prefix(self)); self.buf.write(buf) } // Check if we're over the minimum width, if so then we can also // just write the bytes. Some(min) if width >= min => { try!(write_prefix(self)); self.buf.write(buf) } // The sign and prefix goes before the padding if the fill character // is zero Some(min) if self.flags & (1 << (FlagSignAwareZeroPad as uint)) != 0 => { self.fill = '0'; try!(write_prefix(self)); self.with_padding(min - width, rt::AlignRight, |f| f.buf.write(buf)) } // Otherwise, the sign and prefix goes after the padding Some(min) => { self.with_padding(min - width, rt::AlignRight, |f| { try!(write_prefix(f)); f.buf.write(buf) }) } } } /// This function takes a string slice and emits it to the internal buffer /// after applying the relevant formatting flags specified. The flags /// recognized for generic strings are: /// /// * width - the minimum width of what to emit /// * fill/align - what to emit and where to emit it if the string /// provided needs to be padded /// * precision - the maximum length to emit, the string is truncated if it /// is longer than this length /// /// Notably this function ignored the `flag` parameters #[unstable = "definition may change slightly over time"] pub fn pad(&mut self, s: &str) -> Result { // Make sure there's a fast path up front if self.width.is_none() && self.precision.is_none() { return self.buf.write(s.as_bytes()); } // The `precision` field can be interpreted as a `max-width` for the // string being formatted match self.precision { Some(max) => { // If there's a maximum width and our string is longer than // that, then we must always have truncation. This is the only // case where the maximum length will matter. let char_len = s.char_len(); if char_len >= max { let nchars = ::cmp::min(max, char_len); return self.buf.write(s.slice_chars(0, nchars).as_bytes()); } } None => {} } // The `width` field is more of a `min-width` parameter at this point. match self.width { // If we're under the maximum length, and there's no minimum length // requirements, then we can just emit the string None => self.buf.write(s.as_bytes()), // If we're under the maximum width, check if we're over the minimum // width, if so it's as easy as just emitting the string. Some(width) if s.char_len() >= width => { self.buf.write(s.as_bytes()) } // If we're under both the maximum and the minimum width, then fill // up the minimum width with the specified string + some alignment. Some(width) => { self.with_padding(width - s.char_len(), rt::AlignLeft, |me| { me.buf.write(s.as_bytes()) }) } } } /// Runs a callback, emitting the correct padding either before or /// afterwards depending on whether right or left alignment is requested. fn with_padding(&mut self, padding: uint, default: rt::Alignment, f: F) -> Result where F: FnOnce(&mut Formatter) -> Result, { use char::Char; let align = match self.align { rt::AlignUnknown => default, _ => self.align }; let (pre_pad, post_pad) = match align { rt::AlignLeft => (0u, padding), rt::AlignRight | rt::AlignUnknown => (padding, 0u), rt::AlignCenter => (padding / 2, (padding + 1) / 2), }; let mut fill = [0u8, ..4]; let len = self.fill.encode_utf8(&mut fill).unwrap_or(0); for _ in range(0, pre_pad) { try!(self.buf.write(fill[..len])); } try!(f(self)); for _ in range(0, post_pad) { try!(self.buf.write(fill[..len])); } Ok(()) } /// Writes some data to the underlying buffer contained within this /// formatter. #[unstable = "reconciling core and I/O may alter this definition"] pub fn write(&mut self, data: &[u8]) -> Result { self.buf.write(data) } /// Writes some formatted information into this instance #[unstable = "reconciling core and I/O may alter this definition"] pub fn write_fmt(&mut self, fmt: &Arguments) -> Result { write(self.buf, fmt) } /// Flags for formatting (packed version of rt::Flag) #[experimental = "return type may change and method was just created"] pub fn flags(&self) -> uint { self.flags } /// Character used as 'fill' whenever there is alignment #[unstable = "method was just created"] pub fn fill(&self) -> char { self.fill } /// Flag indicating what form of alignment was requested #[unstable = "method was just created"] pub fn align(&self) -> rt::Alignment { self.align } /// Optionally specified integer width that the output should be #[unstable = "method was just created"] pub fn width(&self) -> Option { self.width } /// Optionally specified precision for numeric types #[unstable = "method was just created"] pub fn precision(&self) -> Option { self.precision } } impl Show for Error { fn fmt(&self, f: &mut Formatter) -> Result { "an error occurred when formatting an argument".fmt(f) } } /// This is a function which calls are emitted to by the compiler itself to /// create the Argument structures that are passed into the `format` function. #[doc(hidden)] #[inline] #[experimental = "implementation detail of the `format_args!` macro"] pub fn argument<'a, T>(f: fn(&T, &mut Formatter) -> Result, t: &'a T) -> Argument<'a> { Argument::new(t, f) } /// When the compiler determines that the type of an argument *must* be a uint /// (such as for width and precision), then it invokes this method. #[doc(hidden)] #[inline] #[experimental = "implementation detail of the `format_args!` macro"] pub fn argumentuint<'a>(s: &'a uint) -> Argument<'a> { Argument::from_uint(s) } // Implementations of the core formatting traits impl<'a, Sized? T: Show> Show for &'a T { fn fmt(&self, f: &mut Formatter) -> Result { (**self).fmt(f) } } impl<'a, Sized? T: Show> Show for &'a mut T { fn fmt(&self, f: &mut Formatter) -> Result { (**self).fmt(f) } } impl<'a> Show for &'a (Show+'a) { fn fmt(&self, f: &mut Formatter) -> Result { (*self).fmt(f) } } impl Show for bool { fn fmt(&self, f: &mut Formatter) -> Result { Show::fmt(if *self { "true" } else { "false" }, f) } } impl Show for str { fn fmt(&self, f: &mut Formatter) -> Result { f.pad(self) } } impl Show for char { fn fmt(&self, f: &mut Formatter) -> Result { use char::Char; let mut utf8 = [0u8, ..4]; let amt = self.encode_utf8(&mut utf8).unwrap_or(0); let s: &str = unsafe { mem::transmute(utf8[..amt]) }; Show::fmt(s, f) } } impl Pointer for *const T { fn fmt(&self, f: &mut Formatter) -> Result { f.flags |= 1 << (rt::FlagAlternate as uint); LowerHex::fmt(&(*self as uint), f) } } impl Pointer for *mut T { fn fmt(&self, f: &mut Formatter) -> Result { Pointer::fmt(&(*self as *const T), f) } } impl<'a, T> Pointer for &'a T { fn fmt(&self, f: &mut Formatter) -> Result { Pointer::fmt(&(*self as *const T), f) } } impl<'a, T> Pointer for &'a mut T { fn fmt(&self, f: &mut Formatter) -> Result { Pointer::fmt(&(&**self as *const T), f) } } macro_rules! floating(($ty:ident) => { impl Show for $ty { fn fmt(&self, fmt: &mut Formatter) -> Result { use num::Float; let digits = match fmt.precision { Some(i) => float::DigExact(i), None => float::DigMax(6), }; float::float_to_str_bytes_common(self.abs(), 10, true, float::SignNeg, digits, float::ExpNone, false, |bytes| { fmt.pad_integral(self.is_nan() || *self >= 0.0, "", bytes) }) } } impl LowerExp for $ty { fn fmt(&self, fmt: &mut Formatter) -> Result { use num::Float; let digits = match fmt.precision { Some(i) => float::DigExact(i), None => float::DigMax(6), }; float::float_to_str_bytes_common(self.abs(), 10, true, float::SignNeg, digits, float::ExpDec, false, |bytes| { fmt.pad_integral(self.is_nan() || *self >= 0.0, "", bytes) }) } } impl UpperExp for $ty { fn fmt(&self, fmt: &mut Formatter) -> Result { use num::Float; let digits = match fmt.precision { Some(i) => float::DigExact(i), None => float::DigMax(6), }; float::float_to_str_bytes_common(self.abs(), 10, true, float::SignNeg, digits, float::ExpDec, true, |bytes| { fmt.pad_integral(self.is_nan() || *self >= 0.0, "", bytes) }) } } }) floating!(f32) floating!(f64) // Implementation of Show for various core types impl Show for *const T { fn fmt(&self, f: &mut Formatter) -> Result { Pointer::fmt(self, f) } } impl Show for *mut T { fn fmt(&self, f: &mut Formatter) -> Result { Pointer::fmt(self, f) } } macro_rules! peel(($name:ident, $($other:ident,)*) => (tuple!($($other,)*))) macro_rules! tuple ( () => (); ( $($name:ident,)+ ) => ( impl<$($name:Show),*> Show for ($($name,)*) { #[allow(non_snake_case, unused_assignments)] fn fmt(&self, f: &mut Formatter) -> Result { try!(write!(f, "(")); let ($(ref $name,)*) = *self; let mut n = 0i; $( if n > 0 { try!(write!(f, ", ")); } try!(write!(f, "{}", *$name)); n += 1; )* if n == 1 { try!(write!(f, ",")); } write!(f, ")") } } peel!($($name,)*) ) ) tuple! { T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, } impl<'a> Show for &'a (any::Any+'a) { fn fmt(&self, f: &mut Formatter) -> Result { f.pad("&Any") } } impl Show for [T] { fn fmt(&self, f: &mut Formatter) -> Result { if f.flags & (1 << (rt::FlagAlternate as uint)) == 0 { try!(write!(f, "[")); } let mut is_first = true; for x in self.iter() { if is_first { is_first = false; } else { try!(write!(f, ", ")); } try!(write!(f, "{}", *x)) } if f.flags & (1 << (rt::FlagAlternate as uint)) == 0 { try!(write!(f, "]")); } Ok(()) } } impl Show for () { fn fmt(&self, f: &mut Formatter) -> Result { f.pad("()") } } impl Show for Cell { fn fmt(&self, f: &mut Formatter) -> Result { write!(f, "Cell {{ value: {} }}", self.get()) } } impl<'b, T: Show> Show for Ref<'b, T> { fn fmt(&self, f: &mut Formatter) -> Result { (**self).fmt(f) } } impl<'b, T: Show> Show for RefMut<'b, T> { fn fmt(&self, f: &mut Formatter) -> Result { (*(self.deref())).fmt(f) } } // If you expected tests to be here, look instead at the run-pass/ifmt.rs test, // it's a lot easier than creating all of the rt::Piece structures here.