// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Utilities for manipulating the char type use cmp::Ord; use option::{None, Option, Some}; use str; use u32; use uint; use unicode; #[cfg(notest)] use cmp::Eq; /* Lu Uppercase_Letter an uppercase letter Ll Lowercase_Letter a lowercase letter Lt Titlecase_Letter a digraphic character, with first part uppercase Lm Modifier_Letter a modifier letter Lo Other_Letter other letters, including syllables and ideographs Mn Nonspacing_Mark a nonspacing combining mark (zero advance width) Mc Spacing_Mark a spacing combining mark (positive advance width) Me Enclosing_Mark an enclosing combining mark Nd Decimal_Number a decimal digit Nl Letter_Number a letterlike numeric character No Other_Number a numeric character of other type Pc Connector_Punctuation a connecting punctuation mark, like a tie Pd Dash_Punctuation a dash or hyphen punctuation mark Ps Open_Punctuation an opening punctuation mark (of a pair) Pe Close_Punctuation a closing punctuation mark (of a pair) Pi Initial_Punctuation an initial quotation mark Pf Final_Punctuation a final quotation mark Po Other_Punctuation a punctuation mark of other type Sm Math_Symbol a symbol of primarily mathematical use Sc Currency_Symbol a currency sign Sk Modifier_Symbol a non-letterlike modifier symbol So Other_Symbol a symbol of other type Zs Space_Separator a space character (of various non-zero widths) Zl Line_Separator U+2028 LINE SEPARATOR only Zp Paragraph_Separator U+2029 PARAGRAPH SEPARATOR only Cc Control a C0 or C1 control code Cf Format a format control character Cs Surrogate a surrogate code point Co Private_Use a private-use character Cn Unassigned a reserved unassigned code point or a noncharacter */ pub use is_alphabetic = unicode::derived_property::Alphabetic; pub use is_XID_start = unicode::derived_property::XID_Start; pub use is_XID_continue = unicode::derived_property::XID_Continue; /** * Indicates whether a character is in lower case, defined * in terms of the Unicode General Category 'Ll' */ #[inline(always)] pub fn is_lowercase(c: char) -> bool { return unicode::general_category::Ll(c); } /** * Indicates whether a character is in upper case, defined * in terms of the Unicode General Category 'Lu'. */ #[inline(always)] pub fn is_uppercase(c: char) -> bool { return unicode::general_category::Lu(c); } /** * Indicates whether a character is whitespace. Whitespace is defined in * terms of the Unicode General Categories 'Zs', 'Zl', 'Zp' * additional 'Cc'-category control codes in the range [0x09, 0x0d] */ #[inline(always)] pub fn is_whitespace(c: char) -> bool { return ('\x09' <= c && c <= '\x0d') || unicode::general_category::Zs(c) || unicode::general_category::Zl(c) || unicode::general_category::Zp(c); } /** * Indicates whether a character is alphanumeric. Alphanumericness is * defined in terms of the Unicode General Categories 'Nd', 'Nl', 'No' * and the Derived Core Property 'Alphabetic'. */ #[inline(always)] pub fn is_alphanumeric(c: char) -> bool { return unicode::derived_property::Alphabetic(c) || unicode::general_category::Nd(c) || unicode::general_category::Nl(c) || unicode::general_category::No(c); } /// Indicates whether the character is numeric (Nd, Nl, or No) #[inline(always)] pub fn is_digit(c: char) -> bool { return unicode::general_category::Nd(c) || unicode::general_category::Nl(c) || unicode::general_category::No(c); } /** * Checks if a character parses as a numeric digit in the given radix. * Compared to `is_digit()`, this function only recognizes the * characters `0-9`, `a-z` and `A-Z`. * * Returns `true` if `c` is a valid digit under `radix`, and `false` * otherwise. * * Fails if given a `radix` > 36. * * Note: This just wraps `to_digit()`. */ #[inline(always)] pub fn is_digit_radix(c: char, radix: uint) -> bool { match to_digit(c, radix) { Some(_) => true, None => false } } /** * Convert a char to the corresponding digit. * * # Return value * * If `c` is between '0' and '9', the corresponding value * between 0 and 9. If `c` is 'a' or 'A', 10. If `c` is * 'b' or 'B', 11, etc. Returns none if the char does not * refer to a digit in the given radix. * * # Failure * Fails if given a `radix` outside the range `[0..36]`. */ #[inline] pub fn to_digit(c: char, radix: uint) -> Option { if radix > 36 { fail!(fmt!("to_digit: radix %? is to high (maximum 36)", radix)); } let val = match c { '0' .. '9' => c as uint - ('0' as uint), 'a' .. 'z' => c as uint + 10u - ('a' as uint), 'A' .. 'Z' => c as uint + 10u - ('A' as uint), _ => return None }; if val < radix { Some(val) } else { None } } /** * Converts a number to the character representing it. * * Returns `Some(char)` if `num` represents one digit under `radix`, * using one character of `0-9` or `a-z`, or `None` if it doesn't. * * Fails if given an `radix` > 36. */ #[inline] pub fn from_digit(num: uint, radix: uint) -> Option { if radix > 36 { fail!(fmt!("from_digit: radix %? is to high (maximum 36)", num)); } if num < radix { if num < 10 { Some(('0' as uint + num) as char) } else { Some(('a' as uint + num - 10u) as char) } } else { None } } /** * Return the hexadecimal unicode escape of a char. * * The rules are as follows: * * - chars in [0,0xff] get 2-digit escapes: `\\xNN` * - chars in [0x100,0xffff] get 4-digit escapes: `\\uNNNN` * - chars above 0x10000 get 8-digit escapes: `\\UNNNNNNNN` */ pub fn escape_unicode(c: char) -> ~str { let s = u32::to_str_radix(c as u32, 16u); let (c, pad) = (if c <= '\xff' { ('x', 2u) } else if c <= '\uffff' { ('u', 4u) } else { ('U', 8u) }); assert!(str::len(s) <= pad); let mut out = ~"\\"; str::push_str(&mut out, str::from_char(c)); for uint::range(str::len(s), pad) |_i| { str::push_str(&mut out, ~"0"); } str::push_str(&mut out, s); out } /** * Return a 'default' ASCII and C++11-like char-literal escape of a char. * * The default is chosen with a bias toward producing literals that are * legal in a variety of languages, including C++11 and similar C-family * languages. The exact rules are: * * - Tab, CR and LF are escaped as '\t', '\r' and '\n' respectively. * - Single-quote, double-quote and backslash chars are backslash-escaped. * - Any other chars in the range [0x20,0x7e] are not escaped. * - Any other chars are given hex unicode escapes; see `escape_unicode`. */ pub fn escape_default(c: char) -> ~str { match c { '\t' => ~"\\t", '\r' => ~"\\r", '\n' => ~"\\n", '\\' => ~"\\\\", '\'' => ~"\\'", '"' => ~"\\\"", '\x20' .. '\x7e' => str::from_char(c), _ => escape_unicode(c) } } /// Returns the amount of bytes this character would need if encoded in utf8 pub fn len_utf8_bytes(c: char) -> uint { static max_one_b: uint = 128u; static max_two_b: uint = 2048u; static max_three_b: uint = 65536u; static max_four_b: uint = 2097152u; let code = c as uint; if code < max_one_b { 1u } else if code < max_two_b { 2u } else if code < max_three_b { 3u } else if code < max_four_b { 4u } else { fail!(~"invalid character!") } } #[cfg(notest)] impl Eq for char { #[inline(always)] fn eq(&self, other: &char) -> bool { (*self) == (*other) } #[inline(always)] fn ne(&self, other: &char) -> bool { (*self) != (*other) } } #[cfg(notest)] impl Ord for char { #[inline(always)] fn lt(&self, other: &char) -> bool { *self < *other } #[inline(always)] fn le(&self, other: &char) -> bool { *self <= *other } #[inline(always)] fn gt(&self, other: &char) -> bool { *self > *other } #[inline(always)] fn ge(&self, other: &char) -> bool { *self >= *other } } #[test] fn test_is_lowercase() { assert!(is_lowercase('a')); assert!(is_lowercase('ö')); assert!(is_lowercase('ß')); assert!(!is_lowercase('Ü')); assert!(!is_lowercase('P')); } #[test] fn test_is_uppercase() { assert!(!is_uppercase('h')); assert!(!is_uppercase('ä')); assert!(!is_uppercase('ß')); assert!(is_uppercase('Ö')); assert!(is_uppercase('T')); } #[test] fn test_is_whitespace() { assert!(is_whitespace(' ')); assert!(is_whitespace('\u2007')); assert!(is_whitespace('\t')); assert!(is_whitespace('\n')); assert!(!is_whitespace('a')); assert!(!is_whitespace('_')); assert!(!is_whitespace('\u0000')); } #[test] fn test_to_digit() { assert_eq!(to_digit('0', 10u), Some(0u)); assert_eq!(to_digit('1', 2u), Some(1u)); assert_eq!(to_digit('2', 3u), Some(2u)); assert_eq!(to_digit('9', 10u), Some(9u)); assert_eq!(to_digit('a', 16u), Some(10u)); assert_eq!(to_digit('A', 16u), Some(10u)); assert_eq!(to_digit('b', 16u), Some(11u)); assert_eq!(to_digit('B', 16u), Some(11u)); assert_eq!(to_digit('z', 36u), Some(35u)); assert_eq!(to_digit('Z', 36u), Some(35u)); assert!(to_digit(' ', 10u).is_none()); assert!(to_digit('$', 36u).is_none()); } #[test] fn test_is_digit() { assert!(is_digit('2')); assert!(is_digit('7')); assert!(! is_digit('c')); assert!(! is_digit('i')); assert!(! is_digit('z')); assert!(! is_digit('Q')); } #[test] fn test_escape_default() { assert_eq!(escape_default('\n'), ~"\\n"); assert_eq!(escape_default('\r'), ~"\\r"); assert_eq!(escape_default('\''), ~"\\'"); assert_eq!(escape_default('"'), ~"\\\""); assert_eq!(escape_default(' '), ~" "); assert_eq!(escape_default('a'), ~"a"); assert_eq!(escape_default('~'), ~"~"); assert_eq!(escape_default('\x00'), ~"\\x00"); assert_eq!(escape_default('\x1f'), ~"\\x1f"); assert_eq!(escape_default('\x7f'), ~"\\x7f"); assert_eq!(escape_default('\xff'), ~"\\xff"); assert_eq!(escape_default('\u011b'), ~"\\u011b"); assert_eq!(escape_default('\U0001d4b6'), ~"\\U0001d4b6"); } #[test] fn test_escape_unicode() { assert_eq!(escape_unicode('\x00'), ~"\\x00"); assert_eq!(escape_unicode('\n'), ~"\\x0a"); assert_eq!(escape_unicode(' '), ~"\\x20"); assert_eq!(escape_unicode('a'), ~"\\x61"); assert_eq!(escape_unicode('\u011b'), ~"\\u011b"); assert_eq!(escape_unicode('\U0001d4b6'), ~"\\U0001d4b6"); }