use crate::consts::{constant_context, constant_simple}; use crate::utils::differing_macro_contexts; use rustc::hir::ptr::P; use rustc::hir::*; use rustc::lint::LateContext; use rustc::ty::{self, TypeckTables}; use std::collections::hash_map::DefaultHasher; use std::hash::{Hash, Hasher}; use syntax::ast::Name; /// Type used to check whether two ast are the same. This is different from the /// operator /// `==` on ast types as this operator would compare true equality with ID and /// span. /// /// Note that some expressions kinds are not considered but could be added. pub struct SpanlessEq<'a, 'tcx> { /// Context used to evaluate constant expressions. cx: &'a LateContext<'a, 'tcx>, tables: &'a TypeckTables<'tcx>, /// If is true, never consider as equal expressions containing function /// calls. ignore_fn: bool, } impl<'a, 'tcx> SpanlessEq<'a, 'tcx> { pub fn new(cx: &'a LateContext<'a, 'tcx>) -> Self { Self { cx, tables: cx.tables, ignore_fn: false, } } pub fn ignore_fn(self) -> Self { Self { cx: self.cx, tables: self.cx.tables, ignore_fn: true, } } /// Checks whether two statements are the same. pub fn eq_stmt(&mut self, left: &Stmt, right: &Stmt) -> bool { match (&left.node, &right.node) { (&StmtKind::Local(ref l), &StmtKind::Local(ref r)) => { self.eq_pat(&l.pat, &r.pat) && both(&l.ty, &r.ty, |l, r| self.eq_ty(l, r)) && both(&l.init, &r.init, |l, r| self.eq_expr(l, r)) }, (&StmtKind::Expr(ref l), &StmtKind::Expr(ref r)) | (&StmtKind::Semi(ref l), &StmtKind::Semi(ref r)) => { self.eq_expr(l, r) }, _ => false, } } /// Checks whether two blocks are the same. pub fn eq_block(&mut self, left: &Block, right: &Block) -> bool { over(&left.stmts, &right.stmts, |l, r| self.eq_stmt(l, r)) && both(&left.expr, &right.expr, |l, r| self.eq_expr(l, r)) } #[allow(clippy::similar_names)] pub fn eq_expr(&mut self, left: &Expr, right: &Expr) -> bool { if self.ignore_fn && differing_macro_contexts(left.span, right.span) { return false; } if let (Some(l), Some(r)) = ( constant_simple(self.cx, self.tables, left), constant_simple(self.cx, self.tables, right), ) { if l == r { return true; } } match (&left.node, &right.node) { (&ExprKind::AddrOf(l_mut, ref le), &ExprKind::AddrOf(r_mut, ref re)) => { l_mut == r_mut && self.eq_expr(le, re) }, (&ExprKind::Continue(li), &ExprKind::Continue(ri)) => { both(&li.label, &ri.label, |l, r| l.ident.as_str() == r.ident.as_str()) }, (&ExprKind::Assign(ref ll, ref lr), &ExprKind::Assign(ref rl, ref rr)) => { self.eq_expr(ll, rl) && self.eq_expr(lr, rr) }, (&ExprKind::AssignOp(ref lo, ref ll, ref lr), &ExprKind::AssignOp(ref ro, ref rl, ref rr)) => { lo.node == ro.node && self.eq_expr(ll, rl) && self.eq_expr(lr, rr) }, (&ExprKind::Block(ref l, _), &ExprKind::Block(ref r, _)) => self.eq_block(l, r), (&ExprKind::Binary(l_op, ref ll, ref lr), &ExprKind::Binary(r_op, ref rl, ref rr)) => { l_op.node == r_op.node && self.eq_expr(ll, rl) && self.eq_expr(lr, rr) || swap_binop(l_op.node, ll, lr).map_or(false, |(l_op, ll, lr)| { l_op == r_op.node && self.eq_expr(ll, rl) && self.eq_expr(lr, rr) }) }, (&ExprKind::Break(li, ref le), &ExprKind::Break(ri, ref re)) => { both(&li.label, &ri.label, |l, r| l.ident.as_str() == r.ident.as_str()) && both(le, re, |l, r| self.eq_expr(l, r)) }, (&ExprKind::Box(ref l), &ExprKind::Box(ref r)) => self.eq_expr(l, r), (&ExprKind::Call(ref l_fun, ref l_args), &ExprKind::Call(ref r_fun, ref r_args)) => { !self.ignore_fn && self.eq_expr(l_fun, r_fun) && self.eq_exprs(l_args, r_args) }, (&ExprKind::Cast(ref lx, ref lt), &ExprKind::Cast(ref rx, ref rt)) | (&ExprKind::Type(ref lx, ref lt), &ExprKind::Type(ref rx, ref rt)) => { self.eq_expr(lx, rx) && self.eq_ty(lt, rt) }, (&ExprKind::Field(ref l_f_exp, ref l_f_ident), &ExprKind::Field(ref r_f_exp, ref r_f_ident)) => { l_f_ident.name == r_f_ident.name && self.eq_expr(l_f_exp, r_f_exp) }, (&ExprKind::Index(ref la, ref li), &ExprKind::Index(ref ra, ref ri)) => { self.eq_expr(la, ra) && self.eq_expr(li, ri) }, (&ExprKind::Lit(ref l), &ExprKind::Lit(ref r)) => l.node == r.node, (&ExprKind::Loop(ref lb, ref ll, ref lls), &ExprKind::Loop(ref rb, ref rl, ref rls)) => { lls == rls && self.eq_block(lb, rb) && both(ll, rl, |l, r| l.ident.as_str() == r.ident.as_str()) }, (&ExprKind::Match(ref le, ref la, ref ls), &ExprKind::Match(ref re, ref ra, ref rs)) => { ls == rs && self.eq_expr(le, re) && over(la, ra, |l, r| { self.eq_expr(&l.body, &r.body) && both(&l.guard, &r.guard, |l, r| self.eq_guard(l, r)) && over(&l.pats, &r.pats, |l, r| self.eq_pat(l, r)) }) }, (&ExprKind::MethodCall(ref l_path, _, ref l_args), &ExprKind::MethodCall(ref r_path, _, ref r_args)) => { !self.ignore_fn && self.eq_path_segment(l_path, r_path) && self.eq_exprs(l_args, r_args) }, (&ExprKind::Repeat(ref le, ref ll_id), &ExprKind::Repeat(ref re, ref rl_id)) => { let mut celcx = constant_context(self.cx, self.cx.tcx.body_tables(ll_id.body)); let ll = celcx.expr(&self.cx.tcx.hir().body(ll_id.body).value); let mut celcx = constant_context(self.cx, self.cx.tcx.body_tables(rl_id.body)); let rl = celcx.expr(&self.cx.tcx.hir().body(rl_id.body).value); self.eq_expr(le, re) && ll == rl }, (&ExprKind::Ret(ref l), &ExprKind::Ret(ref r)) => both(l, r, |l, r| self.eq_expr(l, r)), (&ExprKind::Path(ref l), &ExprKind::Path(ref r)) => self.eq_qpath(l, r), (&ExprKind::Struct(ref l_path, ref lf, ref lo), &ExprKind::Struct(ref r_path, ref rf, ref ro)) => { self.eq_qpath(l_path, r_path) && both(lo, ro, |l, r| self.eq_expr(l, r)) && over(lf, rf, |l, r| self.eq_field(l, r)) }, (&ExprKind::Tup(ref l_tup), &ExprKind::Tup(ref r_tup)) => self.eq_exprs(l_tup, r_tup), (&ExprKind::Unary(l_op, ref le), &ExprKind::Unary(r_op, ref re)) => l_op == r_op && self.eq_expr(le, re), (&ExprKind::Array(ref l), &ExprKind::Array(ref r)) => self.eq_exprs(l, r), (&ExprKind::DropTemps(ref le), &ExprKind::DropTemps(ref re)) => self.eq_expr(le, re), _ => false, } } fn eq_exprs(&mut self, left: &P<[Expr]>, right: &P<[Expr]>) -> bool { over(left, right, |l, r| self.eq_expr(l, r)) } fn eq_field(&mut self, left: &Field, right: &Field) -> bool { left.ident.name == right.ident.name && self.eq_expr(&left.expr, &right.expr) } fn eq_guard(&mut self, left: &Guard, right: &Guard) -> bool { match (left, right) { (Guard::If(l), Guard::If(r)) => self.eq_expr(l, r), } } fn eq_generic_arg(&mut self, left: &GenericArg, right: &GenericArg) -> bool { match (left, right) { (GenericArg::Lifetime(l_lt), GenericArg::Lifetime(r_lt)) => self.eq_lifetime(l_lt, r_lt), (GenericArg::Type(l_ty), GenericArg::Type(r_ty)) => self.eq_ty(l_ty, r_ty), _ => false, } } fn eq_lifetime(&mut self, left: &Lifetime, right: &Lifetime) -> bool { left.name == right.name } /// Checks whether two patterns are the same. pub fn eq_pat(&mut self, left: &Pat, right: &Pat) -> bool { match (&left.node, &right.node) { (&PatKind::Box(ref l), &PatKind::Box(ref r)) => self.eq_pat(l, r), (&PatKind::TupleStruct(ref lp, ref la, ls), &PatKind::TupleStruct(ref rp, ref ra, rs)) => { self.eq_qpath(lp, rp) && over(la, ra, |l, r| self.eq_pat(l, r)) && ls == rs }, (&PatKind::Binding(ref lb, .., ref li, ref lp), &PatKind::Binding(ref rb, .., ref ri, ref rp)) => { lb == rb && li.name.as_str() == ri.name.as_str() && both(lp, rp, |l, r| self.eq_pat(l, r)) }, (&PatKind::Path(ref l), &PatKind::Path(ref r)) => self.eq_qpath(l, r), (&PatKind::Lit(ref l), &PatKind::Lit(ref r)) => self.eq_expr(l, r), (&PatKind::Tuple(ref l, ls), &PatKind::Tuple(ref r, rs)) => { ls == rs && over(l, r, |l, r| self.eq_pat(l, r)) }, (&PatKind::Range(ref ls, ref le, ref li), &PatKind::Range(ref rs, ref re, ref ri)) => { self.eq_expr(ls, rs) && self.eq_expr(le, re) && (*li == *ri) }, (&PatKind::Ref(ref le, ref lm), &PatKind::Ref(ref re, ref rm)) => lm == rm && self.eq_pat(le, re), (&PatKind::Slice(ref ls, ref li, ref le), &PatKind::Slice(ref rs, ref ri, ref re)) => { over(ls, rs, |l, r| self.eq_pat(l, r)) && over(le, re, |l, r| self.eq_pat(l, r)) && both(li, ri, |l, r| self.eq_pat(l, r)) }, (&PatKind::Wild, &PatKind::Wild) => true, _ => false, } } #[allow(clippy::similar_names)] fn eq_qpath(&mut self, left: &QPath, right: &QPath) -> bool { match (left, right) { (&QPath::Resolved(ref lty, ref lpath), &QPath::Resolved(ref rty, ref rpath)) => { both(lty, rty, |l, r| self.eq_ty(l, r)) && self.eq_path(lpath, rpath) }, (&QPath::TypeRelative(ref lty, ref lseg), &QPath::TypeRelative(ref rty, ref rseg)) => { self.eq_ty(lty, rty) && self.eq_path_segment(lseg, rseg) }, _ => false, } } fn eq_path(&mut self, left: &Path, right: &Path) -> bool { left.is_global() == right.is_global() && over(&left.segments, &right.segments, |l, r| self.eq_path_segment(l, r)) } fn eq_path_parameters(&mut self, left: &GenericArgs, right: &GenericArgs) -> bool { if !(left.parenthesized || right.parenthesized) { over(&left.args, &right.args, |l, r| self.eq_generic_arg(l, r)) // FIXME(flip1995): may not work && over(&left.bindings, &right.bindings, |l, r| self.eq_type_binding(l, r)) } else if left.parenthesized && right.parenthesized { over(left.inputs(), right.inputs(), |l, r| self.eq_ty(l, r)) && both(&Some(&left.bindings[0].ty()), &Some(&right.bindings[0].ty()), |l, r| { self.eq_ty(l, r) }) } else { false } } pub fn eq_path_segments(&mut self, left: &[PathSegment], right: &[PathSegment]) -> bool { left.len() == right.len() && left.iter().zip(right).all(|(l, r)| self.eq_path_segment(l, r)) } pub fn eq_path_segment(&mut self, left: &PathSegment, right: &PathSegment) -> bool { // The == of idents doesn't work with different contexts, // we have to be explicit about hygiene if left.ident.as_str() != right.ident.as_str() { return false; } match (&left.args, &right.args) { (&None, &None) => true, (&Some(ref l), &Some(ref r)) => self.eq_path_parameters(l, r), _ => false, } } pub fn eq_ty(&mut self, left: &Ty, right: &Ty) -> bool { self.eq_ty_kind(&left.node, &right.node) } #[allow(clippy::similar_names)] pub fn eq_ty_kind(&mut self, left: &TyKind, right: &TyKind) -> bool { match (left, right) { (&TyKind::Slice(ref l_vec), &TyKind::Slice(ref r_vec)) => self.eq_ty(l_vec, r_vec), (&TyKind::Array(ref lt, ref ll_id), &TyKind::Array(ref rt, ref rl_id)) => { let full_table = self.tables; let mut celcx = constant_context(self.cx, self.cx.tcx.body_tables(ll_id.body)); self.tables = self.cx.tcx.body_tables(ll_id.body); let ll = celcx.expr(&self.cx.tcx.hir().body(ll_id.body).value); let mut celcx = constant_context(self.cx, self.cx.tcx.body_tables(rl_id.body)); self.tables = self.cx.tcx.body_tables(rl_id.body); let rl = celcx.expr(&self.cx.tcx.hir().body(rl_id.body).value); let eq_ty = self.eq_ty(lt, rt); self.tables = full_table; eq_ty && ll == rl }, (&TyKind::Ptr(ref l_mut), &TyKind::Ptr(ref r_mut)) => { l_mut.mutbl == r_mut.mutbl && self.eq_ty(&*l_mut.ty, &*r_mut.ty) }, (&TyKind::Rptr(_, ref l_rmut), &TyKind::Rptr(_, ref r_rmut)) => { l_rmut.mutbl == r_rmut.mutbl && self.eq_ty(&*l_rmut.ty, &*r_rmut.ty) }, (&TyKind::Path(ref l), &TyKind::Path(ref r)) => self.eq_qpath(l, r), (&TyKind::Tup(ref l), &TyKind::Tup(ref r)) => over(l, r, |l, r| self.eq_ty(l, r)), (&TyKind::Infer, &TyKind::Infer) => true, _ => false, } } fn eq_type_binding(&mut self, left: &TypeBinding, right: &TypeBinding) -> bool { left.ident.name == right.ident.name && self.eq_ty(&left.ty(), &right.ty()) } } fn swap_binop<'a>(binop: BinOpKind, lhs: &'a Expr, rhs: &'a Expr) -> Option<(BinOpKind, &'a Expr, &'a Expr)> { match binop { BinOpKind::Add | BinOpKind::Mul | BinOpKind::Eq | BinOpKind::Ne | BinOpKind::BitAnd | BinOpKind::BitXor | BinOpKind::BitOr => Some((binop, rhs, lhs)), BinOpKind::Lt => Some((BinOpKind::Gt, rhs, lhs)), BinOpKind::Le => Some((BinOpKind::Ge, rhs, lhs)), BinOpKind::Ge => Some((BinOpKind::Le, rhs, lhs)), BinOpKind::Gt => Some((BinOpKind::Lt, rhs, lhs)), BinOpKind::Shl | BinOpKind::Shr | BinOpKind::Rem | BinOpKind::Sub | BinOpKind::Div | BinOpKind::And | BinOpKind::Or => None, } } /// Checks if the two `Option`s are both `None` or some equal values as per /// `eq_fn`. fn both(l: &Option, r: &Option, mut eq_fn: F) -> bool where F: FnMut(&X, &X) -> bool, { l.as_ref() .map_or_else(|| r.is_none(), |x| r.as_ref().map_or(false, |y| eq_fn(x, y))) } /// Checks if two slices are equal as per `eq_fn`. fn over(left: &[X], right: &[X], mut eq_fn: F) -> bool where F: FnMut(&X, &X) -> bool, { left.len() == right.len() && left.iter().zip(right).all(|(x, y)| eq_fn(x, y)) } /// Type used to hash an ast element. This is different from the `Hash` trait /// on ast types as this /// trait would consider IDs and spans. /// /// All expressions kind are hashed, but some might have a weaker hash. pub struct SpanlessHash<'a, 'tcx> { /// Context used to evaluate constant expressions. cx: &'a LateContext<'a, 'tcx>, tables: &'a TypeckTables<'tcx>, s: DefaultHasher, } impl<'a, 'tcx> SpanlessHash<'a, 'tcx> { pub fn new(cx: &'a LateContext<'a, 'tcx>, tables: &'a TypeckTables<'tcx>) -> Self { Self { cx, tables, s: DefaultHasher::new(), } } pub fn finish(&self) -> u64 { self.s.finish() } pub fn hash_block(&mut self, b: &Block) { for s in &b.stmts { self.hash_stmt(s); } if let Some(ref e) = b.expr { self.hash_expr(e); } match b.rules { BlockCheckMode::DefaultBlock => 0, BlockCheckMode::UnsafeBlock(_) => 1, BlockCheckMode::PushUnsafeBlock(_) => 2, BlockCheckMode::PopUnsafeBlock(_) => 3, } .hash(&mut self.s); } #[allow(clippy::many_single_char_names, clippy::too_many_lines)] pub fn hash_expr(&mut self, e: &Expr) { let simple_const = constant_simple(self.cx, self.tables, e); // const hashing may result in the same hash as some unrelated node, so add a sort of // discriminant depending on which path we're choosing next simple_const.is_some().hash(&mut self.s); if let Some(e) = simple_const { return e.hash(&mut self.s); } std::mem::discriminant(&e.node).hash(&mut self.s); match e.node { ExprKind::AddrOf(m, ref e) => { m.hash(&mut self.s); self.hash_expr(e); }, ExprKind::Continue(i) => { if let Some(i) = i.label { self.hash_name(i.ident.name); } }, ExprKind::Assign(ref l, ref r) => { self.hash_expr(l); self.hash_expr(r); }, ExprKind::AssignOp(ref o, ref l, ref r) => { o.hash(&mut self.s); self.hash_expr(l); self.hash_expr(r); }, ExprKind::Block(ref b, _) => { self.hash_block(b); }, ExprKind::Binary(op, ref l, ref r) => { op.node.hash(&mut self.s); self.hash_expr(l); self.hash_expr(r); }, ExprKind::Break(i, ref j) => { if let Some(i) = i.label { self.hash_name(i.ident.name); } if let Some(ref j) = *j { self.hash_expr(&*j); } }, ExprKind::Box(ref e) | ExprKind::DropTemps(ref e) | ExprKind::Yield(ref e, _) => { self.hash_expr(e); }, ExprKind::Call(ref fun, ref args) => { self.hash_expr(fun); self.hash_exprs(args); }, ExprKind::Cast(ref e, ref ty) => { let c: fn(_, _) -> _ = ExprKind::Cast; c.hash(&mut self.s); self.hash_expr(e); self.hash_ty(ty); }, ExprKind::Closure(cap, _, eid, _, _) => { match cap { CaptureClause::CaptureByValue => 0, CaptureClause::CaptureByRef => 1, } .hash(&mut self.s); self.hash_expr(&self.cx.tcx.hir().body(eid).value); }, ExprKind::Field(ref e, ref f) => { self.hash_expr(e); self.hash_name(f.name); }, ExprKind::Index(ref a, ref i) => { self.hash_expr(a); self.hash_expr(i); }, ExprKind::InlineAsm(..) | ExprKind::Err => {}, ExprKind::Lit(ref l) => { l.hash(&mut self.s); }, ExprKind::Loop(ref b, ref i, _) => { self.hash_block(b); if let Some(i) = *i { self.hash_name(i.ident.name); } }, ExprKind::Match(ref e, ref arms, ref s) => { self.hash_expr(e); for arm in arms { // TODO: arm.pat? if let Some(ref e) = arm.guard { self.hash_guard(e); } self.hash_expr(&arm.body); } s.hash(&mut self.s); }, ExprKind::MethodCall(ref path, ref _tys, ref args) => { self.hash_name(path.ident.name); self.hash_exprs(args); }, ExprKind::Repeat(ref e, ref l_id) => { self.hash_expr(e); let full_table = self.tables; self.tables = self.cx.tcx.body_tables(l_id.body); self.hash_expr(&self.cx.tcx.hir().body(l_id.body).value); self.tables = full_table; }, ExprKind::Ret(ref e) => { if let Some(ref e) = *e { self.hash_expr(e); } }, ExprKind::Path(ref qpath) => { self.hash_qpath(qpath); }, ExprKind::Struct(ref path, ref fields, ref expr) => { self.hash_qpath(path); for f in fields { self.hash_name(f.ident.name); self.hash_expr(&f.expr); } if let Some(ref e) = *expr { self.hash_expr(e); } }, ExprKind::Tup(ref tup) => { let c: fn(_) -> _ = ExprKind::Tup; c.hash(&mut self.s); self.hash_exprs(tup); }, ExprKind::Array(ref v) => { let c: fn(_) -> _ = ExprKind::Array; c.hash(&mut self.s); self.hash_exprs(v); }, ExprKind::Type(ref e, ref ty) => { let c: fn(_, _) -> _ = ExprKind::Type; c.hash(&mut self.s); self.hash_expr(e); self.hash_ty(ty); }, ExprKind::Unary(lop, ref le) => { lop.hash(&mut self.s); self.hash_expr(le); }, } } pub fn hash_exprs(&mut self, e: &P<[Expr]>) { for e in e { self.hash_expr(e); } } pub fn hash_name(&mut self, n: Name) { n.as_str().hash(&mut self.s); } pub fn hash_qpath(&mut self, p: &QPath) { match *p { QPath::Resolved(_, ref path) => { self.hash_path(path); }, QPath::TypeRelative(_, ref path) => { self.hash_name(path.ident.name); }, } // self.cx.tables.qpath_res(p, id).hash(&mut self.s); } pub fn hash_path(&mut self, p: &Path) { p.is_global().hash(&mut self.s); for p in &p.segments { self.hash_name(p.ident.name); } } pub fn hash_stmt(&mut self, b: &Stmt) { std::mem::discriminant(&b.node).hash(&mut self.s); match &b.node { StmtKind::Local(local) => { if let Some(ref init) = local.init { self.hash_expr(init); } }, StmtKind::Item(..) => {}, StmtKind::Expr(expr) | StmtKind::Semi(expr) => { self.hash_expr(expr); }, } } pub fn hash_guard(&mut self, g: &Guard) { match g { Guard::If(ref expr) => { self.hash_expr(expr); }, } } pub fn hash_lifetime(&mut self, lifetime: &Lifetime) { if let LifetimeName::Param(ref name) = lifetime.name { match name { ParamName::Plain(ref ident) => { ident.name.hash(&mut self.s); }, ParamName::Fresh(ref size) => { size.hash(&mut self.s); }, _ => {}, } } } pub fn hash_ty(&mut self, ty: &Ty) { self.hash_tykind(&ty.node); } pub fn hash_tykind(&mut self, ty: &TyKind) { std::mem::discriminant(&ty).hash(&mut self.s); match ty { TyKind::Slice(ty) => { self.hash_ty(ty); }, TyKind::Array(ty, anon_const) => { self.hash_ty(ty); self.hash_expr(&self.cx.tcx.hir().body(anon_const.body).value); }, TyKind::Ptr(mut_ty) => { self.hash_ty(&mut_ty.ty); mut_ty.mutbl.hash(&mut self.s); }, TyKind::Rptr(lifetime, mut_ty) => { self.hash_lifetime(lifetime); self.hash_ty(&mut_ty.ty); mut_ty.mutbl.hash(&mut self.s); }, TyKind::BareFn(bfn) => { bfn.unsafety.hash(&mut self.s); bfn.abi.hash(&mut self.s); for arg in &bfn.decl.inputs { self.hash_ty(&arg); } match bfn.decl.output { FunctionRetTy::DefaultReturn(_) => { ().hash(&mut self.s); }, FunctionRetTy::Return(ref ty) => { self.hash_ty(ty); }, } bfn.decl.c_variadic.hash(&mut self.s); }, TyKind::Tup(ty_list) => { for ty in ty_list { self.hash_ty(ty); } }, TyKind::Path(qpath) => { match qpath { QPath::Resolved(ref maybe_ty, ref path) => { if let Some(ref ty) = maybe_ty { self.hash_ty(ty); } for segment in &path.segments { segment.ident.name.hash(&mut self.s); } }, QPath::TypeRelative(ref ty, ref segment) => { self.hash_ty(ty); segment.ident.name.hash(&mut self.s); }, } }, TyKind::Def(_, arg_list) => { for arg in arg_list { match arg { GenericArg::Lifetime(ref l) => self.hash_lifetime(l), GenericArg::Type(ref ty) => self.hash_ty(&ty), GenericArg::Const(ref ca) => { self.hash_expr(&self.cx.tcx.hir().body(ca.value.body).value); }, } } }, TyKind::TraitObject(_, lifetime) => { self.hash_lifetime(lifetime); }, TyKind::Typeof(anon_const) => { self.hash_expr(&self.cx.tcx.hir().body(anon_const.body).value); }, TyKind::CVarArgs(lifetime) => { self.hash_lifetime(lifetime) }, TyKind::Err | TyKind::Infer | TyKind::Never => {}, } } }