#![feature(strict_provenance)] use std::{mem, ptr}; fn t1() { // If we are careful, we can exploit data layout... // This is a tricky case since we are transmuting a ScalarPair type to a non-ScalarPair type. let raw = unsafe { mem::transmute::<&[u8], [*const u8; 2]>(&[42]) }; let ptr: *const u8 = unsafe { mem::transmute_copy(&raw) }; assert_eq!(unsafe { *ptr }, 42); } #[cfg(target_pointer_width = "64")] const PTR_SIZE: usize = 8; #[cfg(target_pointer_width = "32")] const PTR_SIZE: usize = 4; fn t2() { let bad = unsafe { mem::transmute::<&[u8], [u8; 2 * PTR_SIZE]>(&[1u8]) }; let _val = bad[0] + bad[bad.len() - 1]; } fn ptr_integer_array() { let r = &mut 42; let _i: [usize; 1] = unsafe { mem::transmute(r) }; let _x: [u8; PTR_SIZE] = unsafe { mem::transmute(&0) }; } fn ptr_in_two_halves() { unsafe { let ptr = &0 as *const i32; let arr = [ptr; 2]; // We want to do a scalar read of a pointer at offset PTR_SIZE/2 into this array. But we // cannot use a packed struct or `read_unaligned`, as those use the memcpy code path in // Miri. So instead we shift the entire array by a bit and then the actual read we want to // do is perfectly aligned. let mut target_arr = [ptr::null::(); 3]; let target = target_arr.as_mut_ptr().cast::(); target.add(PTR_SIZE / 2).cast::<[*const i32; 2]>().write_unaligned(arr); // Now target_arr[1] is a mix of the two `ptr` we had stored in `arr`. let strange_ptr = target_arr[1]; // Check that the provenance works out. assert_eq!(*strange_ptr.with_addr(ptr.addr()), 0); } } fn main() { t1(); t2(); ptr_integer_array(); ptr_in_two_halves(); }