// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Support for inlining external documentation into the current AST. use std::iter::once; use syntax::ast; use syntax::ext::base::MacroKind; use syntax_pos::Span; use rustc::hir; use rustc::hir::def::{Def, CtorKind}; use rustc::hir::def_id::DefId; use rustc::middle::cstore::LoadedMacro; use rustc::ty; use rustc::util::nodemap::FxHashSet; use core::{DocContext, DocAccessLevels}; use doctree; use clean::{self, GetDefId, ToSource, get_auto_traits_with_def_id}; use super::Clean; /// Attempt to inline a definition into this AST. /// /// This function will fetch the definition specified, and if it is /// from another crate it will attempt to inline the documentation /// from the other crate into this crate. /// /// This is primarily used for `pub use` statements which are, in general, /// implementation details. Inlining the documentation should help provide a /// better experience when reading the documentation in this use case. /// /// The returned value is `None` if the definition could not be inlined, /// and `Some` of a vector of items if it was successfully expanded. pub fn try_inline(cx: &DocContext, def: Def, name: ast::Name, visited: &mut FxHashSet) -> Option> { if def == Def::Err { return None } let did = def.def_id(); if did.is_local() { return None } let mut ret = Vec::new(); let inner = match def { Def::Trait(did) => { record_extern_fqn(cx, did, clean::TypeKind::Trait); ret.extend(build_impls(cx, did, false)); clean::TraitItem(build_external_trait(cx, did)) } Def::Fn(did) => { record_extern_fqn(cx, did, clean::TypeKind::Function); clean::FunctionItem(build_external_function(cx, did)) } Def::Struct(did) => { record_extern_fqn(cx, did, clean::TypeKind::Struct); ret.extend(build_impls(cx, did, true)); clean::StructItem(build_struct(cx, did)) } Def::Union(did) => { record_extern_fqn(cx, did, clean::TypeKind::Union); ret.extend(build_impls(cx, did, true)); clean::UnionItem(build_union(cx, did)) } Def::TyAlias(did) => { record_extern_fqn(cx, did, clean::TypeKind::Typedef); ret.extend(build_impls(cx, did, false)); clean::TypedefItem(build_type_alias(cx, did), false) } Def::Enum(did) => { record_extern_fqn(cx, did, clean::TypeKind::Enum); ret.extend(build_impls(cx, did, true)); clean::EnumItem(build_enum(cx, did)) } Def::TyForeign(did) => { record_extern_fqn(cx, did, clean::TypeKind::Foreign); ret.extend(build_impls(cx, did, false)); clean::ForeignTypeItem } // Never inline enum variants but leave them shown as re-exports. Def::Variant(..) => return None, // Assume that enum variants and struct types are re-exported next to // their constructors. Def::VariantCtor(..) | Def::StructCtor(..) => return Some(Vec::new()), Def::Mod(did) => { record_extern_fqn(cx, did, clean::TypeKind::Module); clean::ModuleItem(build_module(cx, did, visited)) } Def::Static(did, mtbl) => { record_extern_fqn(cx, did, clean::TypeKind::Static); clean::StaticItem(build_static(cx, did, mtbl)) } Def::Const(did) => { record_extern_fqn(cx, did, clean::TypeKind::Const); clean::ConstantItem(build_const(cx, did)) } // FIXME(misdreavus): if attributes/derives come down here we should probably document them // separately Def::Macro(did, MacroKind::Bang) => { record_extern_fqn(cx, did, clean::TypeKind::Macro); if let Some(mac) = build_macro(cx, did, name) { clean::MacroItem(mac) } else { return None; } } _ => return None, }; cx.renderinfo.borrow_mut().inlined.insert(did); ret.push(clean::Item { source: cx.tcx.def_span(did).clean(cx), name: Some(name.clean(cx)), attrs: load_attrs(cx, did), inner, visibility: Some(clean::Public), stability: cx.tcx.lookup_stability(did).clean(cx), deprecation: cx.tcx.lookup_deprecation(did).clean(cx), def_id: did, }); Some(ret) } pub fn try_inline_glob(cx: &DocContext, def: Def, visited: &mut FxHashSet) -> Option> { if def == Def::Err { return None } let did = def.def_id(); if did.is_local() { return None } match def { Def::Mod(did) => { let m = build_module(cx, did, visited); Some(m.items) } // glob imports on things like enums aren't inlined even for local exports, so just bail _ => None, } } pub fn load_attrs(cx: &DocContext, did: DefId) -> clean::Attributes { cx.tcx.get_attrs(did).clean(cx) } /// Record an external fully qualified name in the external_paths cache. /// /// These names are used later on by HTML rendering to generate things like /// source links back to the original item. pub fn record_extern_fqn(cx: &DocContext, did: DefId, kind: clean::TypeKind) { if did.is_local() { debug!("record_extern_fqn(did={:?}, kind+{:?}): def_id is local, aborting", did, kind); return; } let crate_name = cx.tcx.crate_name(did.krate).to_string(); let relative = cx.tcx.def_path(did).data.into_iter().filter_map(|elem| { // extern blocks have an empty name let s = elem.data.to_string(); if !s.is_empty() { Some(s) } else { None } }); let fqn = if let clean::TypeKind::Macro = kind { vec![crate_name, relative.last().unwrap()] } else { once(crate_name).chain(relative).collect() }; cx.renderinfo.borrow_mut().external_paths.insert(did, (fqn, kind)); } pub fn build_external_trait(cx: &DocContext, did: DefId) -> clean::Trait { let auto_trait = cx.tcx.trait_def(did).has_auto_impl; let trait_items = cx.tcx.associated_items(did).map(|item| item.clean(cx)).collect(); let predicates = cx.tcx.predicates_of(did); let generics = (cx.tcx.generics_of(did), &predicates).clean(cx); let generics = filter_non_trait_generics(did, generics); let (generics, supertrait_bounds) = separate_supertrait_bounds(generics); let is_spotlight = load_attrs(cx, did).has_doc_flag("spotlight"); let is_auto = cx.tcx.trait_is_auto(did); clean::Trait { auto: auto_trait, unsafety: cx.tcx.trait_def(did).unsafety, generics, items: trait_items, bounds: supertrait_bounds, is_spotlight, is_auto, } } fn build_external_function(cx: &DocContext, did: DefId) -> clean::Function { let sig = cx.tcx.fn_sig(did); let constness = if cx.tcx.is_const_fn(did) { hir::Constness::Const } else { hir::Constness::NotConst }; let predicates = cx.tcx.predicates_of(did); clean::Function { decl: (did, sig).clean(cx), generics: (cx.tcx.generics_of(did), &predicates).clean(cx), header: hir::FnHeader { unsafety: sig.unsafety(), abi: sig.abi(), constness, asyncness: hir::IsAsync::NotAsync, } } } fn build_enum(cx: &DocContext, did: DefId) -> clean::Enum { let predicates = cx.tcx.predicates_of(did); clean::Enum { generics: (cx.tcx.generics_of(did), &predicates).clean(cx), variants_stripped: false, variants: cx.tcx.adt_def(did).variants.clean(cx), } } fn build_struct(cx: &DocContext, did: DefId) -> clean::Struct { let predicates = cx.tcx.predicates_of(did); let variant = cx.tcx.adt_def(did).non_enum_variant(); clean::Struct { struct_type: match variant.ctor_kind { CtorKind::Fictive => doctree::Plain, CtorKind::Fn => doctree::Tuple, CtorKind::Const => doctree::Unit, }, generics: (cx.tcx.generics_of(did), &predicates).clean(cx), fields: variant.fields.clean(cx), fields_stripped: false, } } fn build_union(cx: &DocContext, did: DefId) -> clean::Union { let predicates = cx.tcx.predicates_of(did); let variant = cx.tcx.adt_def(did).non_enum_variant(); clean::Union { struct_type: doctree::Plain, generics: (cx.tcx.generics_of(did), &predicates).clean(cx), fields: variant.fields.clean(cx), fields_stripped: false, } } fn build_type_alias(cx: &DocContext, did: DefId) -> clean::Typedef { let predicates = cx.tcx.predicates_of(did); clean::Typedef { type_: cx.tcx.type_of(did).clean(cx), generics: (cx.tcx.generics_of(did), &predicates).clean(cx), } } pub fn build_impls(cx: &DocContext, did: DefId, auto_traits: bool) -> Vec { let tcx = cx.tcx; let mut impls = Vec::new(); for &did in tcx.inherent_impls(did).iter() { build_impl(cx, did, &mut impls); } if auto_traits { let auto_impls = get_auto_traits_with_def_id(cx, did); let mut renderinfo = cx.renderinfo.borrow_mut(); let new_impls: Vec = auto_impls.into_iter() .filter(|i| renderinfo.inlined.insert(i.def_id)).collect(); impls.extend(new_impls); } // If this is the first time we've inlined something from another crate, then // we inline *all* impls from all the crates into this crate. Note that there's // currently no way for us to filter this based on type, and we likely need // many impls for a variety of reasons. // // Primarily, the impls will be used to populate the documentation for this // type being inlined, but impls can also be used when generating // documentation for primitives (no way to find those specifically). if cx.populated_all_crate_impls.get() { return impls; } cx.populated_all_crate_impls.set(true); for &cnum in tcx.crates().iter() { for did in tcx.all_trait_implementations(cnum).iter() { build_impl(cx, *did, &mut impls); } } // Also try to inline primitive impls from other crates. let lang_items = tcx.lang_items(); let primitive_impls = [ lang_items.isize_impl(), lang_items.i8_impl(), lang_items.i16_impl(), lang_items.i32_impl(), lang_items.i64_impl(), lang_items.i128_impl(), lang_items.usize_impl(), lang_items.u8_impl(), lang_items.u16_impl(), lang_items.u32_impl(), lang_items.u64_impl(), lang_items.u128_impl(), lang_items.f32_impl(), lang_items.f64_impl(), lang_items.f32_runtime_impl(), lang_items.f64_runtime_impl(), lang_items.char_impl(), lang_items.str_impl(), lang_items.slice_impl(), lang_items.slice_u8_impl(), lang_items.str_alloc_impl(), lang_items.slice_alloc_impl(), lang_items.slice_u8_alloc_impl(), lang_items.const_ptr_impl(), lang_items.mut_ptr_impl(), ]; for def_id in primitive_impls.iter().filter_map(|&def_id| def_id) { if !def_id.is_local() { build_impl(cx, def_id, &mut impls); let auto_impls = get_auto_traits_with_def_id(cx, def_id); let mut renderinfo = cx.renderinfo.borrow_mut(); let new_impls: Vec = auto_impls.into_iter() .filter(|i| renderinfo.inlined.insert(i.def_id)).collect(); impls.extend(new_impls); } } impls } pub fn build_impl(cx: &DocContext, did: DefId, ret: &mut Vec) { if !cx.renderinfo.borrow_mut().inlined.insert(did) { return } let attrs = load_attrs(cx, did); let tcx = cx.tcx; let associated_trait = tcx.impl_trait_ref(did); // Only inline impl if the implemented trait is // reachable in rustdoc generated documentation if let Some(traitref) = associated_trait { if !cx.access_levels.borrow().is_doc_reachable(traitref.def_id) { return } } let for_ = tcx.type_of(did).clean(cx); // Only inline impl if the implementing type is // reachable in rustdoc generated documentation if let Some(did) = for_.def_id() { if !cx.access_levels.borrow().is_doc_reachable(did) { return } } let predicates = tcx.predicates_of(did); let trait_items = tcx.associated_items(did).filter_map(|item| { if associated_trait.is_some() || item.vis == ty::Visibility::Public { Some(item.clean(cx)) } else { None } }).collect::>(); let polarity = tcx.impl_polarity(did); let trait_ = associated_trait.clean(cx).map(|bound| { match bound { clean::GenericBound::TraitBound(polyt, _) => polyt.trait_, clean::GenericBound::Outlives(..) => unreachable!(), } }); if trait_.def_id() == tcx.lang_items().deref_trait() { super::build_deref_target_impls(cx, &trait_items, ret); } if let Some(trait_did) = trait_.def_id() { record_extern_trait(cx, trait_did); } let provided = trait_.def_id().map(|did| { tcx.provided_trait_methods(did) .into_iter() .map(|meth| meth.ident.to_string()) .collect() }).unwrap_or(FxHashSet()); ret.push(clean::Item { inner: clean::ImplItem(clean::Impl { unsafety: hir::Unsafety::Normal, generics: (tcx.generics_of(did), &predicates).clean(cx), provided_trait_methods: provided, trait_, for_, items: trait_items, polarity: Some(polarity.clean(cx)), synthetic: false, blanket_impl: None, }), source: tcx.def_span(did).clean(cx), name: None, attrs, visibility: Some(clean::Inherited), stability: tcx.lookup_stability(did).clean(cx), deprecation: tcx.lookup_deprecation(did).clean(cx), def_id: did, }); } fn build_module(cx: &DocContext, did: DefId, visited: &mut FxHashSet) -> clean::Module { let mut items = Vec::new(); fill_in(cx, did, &mut items, visited); return clean::Module { items, is_crate: false, }; fn fill_in(cx: &DocContext, did: DefId, items: &mut Vec, visited: &mut FxHashSet) { // If we're re-exporting a re-export it may actually re-export something in // two namespaces, so the target may be listed twice. Make sure we only // visit each node at most once. for &item in cx.tcx.item_children(did).iter() { let def_id = item.def.def_id(); if item.vis == ty::Visibility::Public { if did == def_id || !visited.insert(def_id) { continue } if let Some(i) = try_inline(cx, item.def, item.ident.name, visited) { items.extend(i) } } } } } pub fn print_inlined_const(cx: &DocContext, did: DefId) -> String { cx.tcx.rendered_const(did) } fn build_const(cx: &DocContext, did: DefId) -> clean::Constant { clean::Constant { type_: cx.tcx.type_of(did).clean(cx), expr: print_inlined_const(cx, did) } } fn build_static(cx: &DocContext, did: DefId, mutable: bool) -> clean::Static { clean::Static { type_: cx.tcx.type_of(did).clean(cx), mutability: if mutable {clean::Mutable} else {clean::Immutable}, expr: "\n\n\n".to_string(), // trigger the "[definition]" links } } fn build_macro(cx: &DocContext, did: DefId, name: ast::Name) -> Option { let imported_from = cx.tcx.original_crate_name(did.krate); let def = match cx.cstore.load_macro_untracked(did, cx.sess()) { LoadedMacro::MacroDef(macro_def) => macro_def, // FIXME(jseyfried): document proc macro re-exports LoadedMacro::ProcMacro(..) => return None, }; let matchers: hir::HirVec = if let ast::ItemKind::MacroDef(ref def) = def.node { let tts: Vec<_> = def.stream().into_trees().collect(); tts.chunks(4).map(|arm| arm[0].span()).collect() } else { unreachable!() }; let source = format!("macro_rules! {} {{\n{}}}", name.clean(cx), matchers.iter().map(|span| { format!(" {} => {{ ... }};\n", span.to_src(cx)) }).collect::()); Some(clean::Macro { source, imported_from: Some(imported_from).clean(cx), }) } /// A trait's generics clause actually contains all of the predicates for all of /// its associated types as well. We specifically move these clauses to the /// associated types instead when displaying, so when we're generating the /// generics for the trait itself we need to be sure to remove them. /// We also need to remove the implied "recursive" Self: Trait bound. /// /// The inverse of this filtering logic can be found in the `Clean` /// implementation for `AssociatedType` fn filter_non_trait_generics(trait_did: DefId, mut g: clean::Generics) -> clean::Generics { for pred in &mut g.where_predicates { match *pred { clean::WherePredicate::BoundPredicate { ty: clean::Generic(ref s), ref mut bounds } if *s == "Self" => { bounds.retain(|bound| { match *bound { clean::GenericBound::TraitBound(clean::PolyTrait { trait_: clean::ResolvedPath { did, .. }, .. }, _) => did != trait_did, _ => true } }); } _ => {} } } g.where_predicates.retain(|pred| { match *pred { clean::WherePredicate::BoundPredicate { ty: clean::QPath { self_type: box clean::Generic(ref s), trait_: box clean::ResolvedPath { did, .. }, name: ref _name, }, ref bounds } => !(*s == "Self" && did == trait_did) && !bounds.is_empty(), _ => true, } }); g } /// Supertrait bounds for a trait are also listed in the generics coming from /// the metadata for a crate, so we want to separate those out and create a new /// list of explicit supertrait bounds to render nicely. fn separate_supertrait_bounds(mut g: clean::Generics) -> (clean::Generics, Vec) { let mut ty_bounds = Vec::new(); g.where_predicates.retain(|pred| { match *pred { clean::WherePredicate::BoundPredicate { ty: clean::Generic(ref s), ref bounds } if *s == "Self" => { ty_bounds.extend(bounds.iter().cloned()); false } _ => true, } }); (g, ty_bounds) } pub fn record_extern_trait(cx: &DocContext, did: DefId) { if cx.external_traits.borrow().contains_key(&did) || cx.active_extern_traits.borrow().contains(&did) { return; } cx.active_extern_traits.borrow_mut().push(did); let trait_ = build_external_trait(cx, did); cx.external_traits.borrow_mut().insert(did, trait_); cx.active_extern_traits.borrow_mut().remove_item(&did); }