#[doc = "Operations and constants for `float`"]; // Even though this module exports everything defined in it, // because it contains re-exports, we also have to explicitly // export locally defined things. That's a bit annoying. export to_str_common, to_str_exact, to_str, from_str; export add, sub, mul, div, rem, lt, le, gt, eq, ne; export is_positive, is_negative, is_nonpositive, is_nonnegative; export is_zero, is_infinite, is_finite; export NaN, is_NaN, infinity, neg_infinity; export consts; export logarithm; export acos, asin, atan, atan2, cbrt, ceil, copysign, cos, cosh, floor; export erf, erfc, exp, expm1, exp2, abs, abs_sub; export mul_add, fmax, fmin, nextafter, frexp, hypot, ldexp; export lgamma, ln, log_radix, ln1p, log10, log2, ilog_radix; export modf, pow, round, sin, sinh, sqrt, tan, tanh, tgamma, trunc; export signbit; export pow_with_uint; export num; // export when m_float == c_double export j0, j1, jn, y0, y1, yn; // PORT this must match in width according to architecture import m_float = f64; import f64::{add, sub, mul, div, rem, lt, le, gt, eq, ne}; import f64::logarithm; import f64::{acos, asin, atan2, cbrt, ceil, copysign, cosh, floor}; import f64::{erf, erfc, exp, expm1, exp2, abs_sub}; import f64::{mul_add, fmax, fmin, nextafter, frexp, hypot, ldexp}; import f64::{lgamma, ln, log_radix, ln1p, log10, log2, ilog_radix}; import f64::{modf, pow, round, sinh, tanh, tgamma, trunc}; import f64::signbit; import f64::{j0, j1, jn, y0, y1, yn}; const NaN: float = 0.0/0.0; const infinity: float = 1.0/0.0; const neg_infinity: float = -1.0/0.0; /* Module: consts */ mod consts { // FIXME (requires Issue #1433 to fix): replace with mathematical // constants from cmath. #[doc = "Archimedes' constant"] const pi: float = 3.14159265358979323846264338327950288; #[doc = "pi/2.0"] const frac_pi_2: float = 1.57079632679489661923132169163975144; #[doc = "pi/4.0"] const frac_pi_4: float = 0.785398163397448309615660845819875721; #[doc = "1.0/pi"] const frac_1_pi: float = 0.318309886183790671537767526745028724; #[doc = "2.0/pi"] const frac_2_pi: float = 0.636619772367581343075535053490057448; #[doc = "2.0/sqrt(pi)"] const frac_2_sqrtpi: float = 1.12837916709551257389615890312154517; #[doc = "sqrt(2.0)"] const sqrt2: float = 1.41421356237309504880168872420969808; #[doc = "1.0/sqrt(2.0)"] const frac_1_sqrt2: float = 0.707106781186547524400844362104849039; #[doc = "Euler's number"] const e: float = 2.71828182845904523536028747135266250; #[doc = "log2(e)"] const log2_e: float = 1.44269504088896340735992468100189214; #[doc = "log10(e)"] const log10_e: float = 0.434294481903251827651128918916605082; #[doc = "ln(2.0)"] const ln_2: float = 0.693147180559945309417232121458176568; #[doc = "ln(10.0)"] const ln_10: float = 2.30258509299404568401799145468436421; } /** * Section: String Conversions */ #[doc = " Converts a float to a string # Arguments * num - The float value * digits - The number of significant digits * exact - Whether to enforce the exact number of significant digits "] fn to_str_common(num: float, digits: uint, exact: bool) -> str { if is_NaN(num) { ret "NaN"; } if num == infinity { ret "inf"; } if num == neg_infinity { ret "-inf"; } let mut (num, sign) = if num < 0.0 { (-num, "-") } else { (num, "") }; // truncated integer let trunc = num as uint; // decimal remainder let mut frac = num - (trunc as float); // stack of digits let mut fractionalParts = ~[]; // FIXME: (#2608) // This used to return right away without rounding, as "~[-]num", // but given epsilon like in f64.rs, I don't see how the comparison // to epsilon did much when only used there. // if (frac < epsilon && !exact) || digits == 0u { ret accum; } // // With something better, possibly weird results like this can be avoided: // assert "3.14158999999999988262" == my_to_str_exact(3.14159, 20u); let mut ii = digits; let mut epsilon_prime = 1.0 / pow_with_uint(10u, ii); // while we still need digits // build stack of digits while ii > 0u && (frac >= epsilon_prime || exact) { // store the next digit frac *= 10.0; let digit = frac as uint; vec::push(fractionalParts, digit); // calculate the next frac frac -= digit as float; epsilon_prime *= 10.0; ii -= 1u; } let mut acc; let mut racc = ""; let mut carry = if frac * 10.0 as uint >= 5u { 1u } else { 0u }; // turn digits into string // using stack of digits while vec::len(fractionalParts) > 0u { let mut adjusted_digit = carry + vec::pop(fractionalParts); if adjusted_digit == 10u { carry = 1u; adjusted_digit %= 10u } else { carry = 0u }; racc = uint::str(adjusted_digit) + racc; } // pad decimals with trailing zeroes while str::len(racc) < digits && exact { racc += "0" } // combine ints and decimals let mut ones = uint::str(trunc + carry); if racc == "" { acc = sign + ones; } else { acc = sign + ones + "." + racc; } ret acc; } #[doc = " Converts a float to a string with exactly the number of provided significant digits # Arguments * num - The float value * digits - The number of significant digits "] fn to_str_exact(num: float, digits: uint) -> str { to_str_common(num, digits, true) } #[test] fn test_to_str_exact_do_decimal() { let s = to_str_exact(5.0, 4u); assert s == "5.0000"; } #[doc = " Converts a float to a string with a maximum number of significant digits # Arguments * num - The float value * digits - The number of significant digits "] fn to_str(num: float, digits: uint) -> str { to_str_common(num, digits, false) } #[doc = " Convert a string to a float This function accepts strings such as * '3.14' * '+3.14', equivalent to '3.14' * '-3.14' * '2.5E10', or equivalently, '2.5e10' * '2.5E-10' * '', or, equivalently, '.' (understood as 0) * '5.' * '.5', or, equivalently, '0.5' * 'inf', '-inf', 'NaN' Leading and trailing whitespace are ignored. # Arguments * num - A string # Return value `none` if the string did not represent a valid number. Otherwise, `some(n)` where `n` is the floating-point number represented by `[num]/~`. "] fn from_str(num: str) -> option { if num == "inf" { ret some(infinity as float); } else if num == "-inf" { ret some(neg_infinity as float); } else if num == "NaN" { ret some(NaN as float); } let mut pos = 0u; //Current byte position in the string. //Used to walk the string in O(n). let len = str::len(num); //Length of the string, in bytes. if len == 0u { ret none; } let mut total = 0f; //Accumulated result let mut c = 'z'; //Latest char. //The string must start with one of the following characters. alt str::char_at(num, 0u) { '-' | '+' | '0' to '9' | '.' {} _ { ret none; } } //Determine if first char is '-'/'+'. Set ~[pos] and ~[neg] accordingly. let mut neg = false; //Sign of the result alt str::char_at(num, 0u) { '-' { neg = true; pos = 1u; } '+' { pos = 1u; } _ {} } //Examine the following chars until '.', 'e', 'E' while(pos < len) { let char_range = str::char_range_at(num, pos); c = char_range.ch; pos = char_range.next; alt c { '0' to '9' { total = total * 10f; total += ((c as int) - ('0' as int)) as float; } '.' | 'e' | 'E' { break; } _ { ret none; } } } if c == '.' {//Examine decimal part let mut decimal = 1f; while(pos < len) { let char_range = str::char_range_at(num, pos); c = char_range.ch; pos = char_range.next; alt c { '0' | '1' | '2' | '3' | '4' | '5' | '6'| '7' | '8' | '9' { decimal /= 10f; total += (((c as int) - ('0' as int)) as float)*decimal; } 'e' | 'E' { break; } _ { ret none; } } } } if (c == 'e') | (c == 'E') {//Examine exponent let mut exponent = 0u; let mut neg_exponent = false; if(pos < len) { let char_range = str::char_range_at(num, pos); c = char_range.ch; alt c { '+' { pos = char_range.next; } '-' { pos = char_range.next; neg_exponent = true; } _ {} } while(pos < len) { let char_range = str::char_range_at(num, pos); c = char_range.ch; alt c { '0' | '1' | '2' | '3' | '4' | '5' | '6'| '7' | '8' | '9' { exponent *= 10u; exponent += ((c as uint) - ('0' as uint)); } _ { break; } } pos = char_range.next; } let multiplier = pow_with_uint(10u, exponent); //Note: not ~[int::pow], otherwise, we'll quickly //end up with a nice overflow if neg_exponent { total = total / multiplier; } else { total = total * multiplier; } } else { ret none; } } if(pos < len) { ret none; } else { if(neg) { total *= -1f; } ret some(total); } } /** * Section: Arithmetics */ #[doc = " Compute the exponentiation of an integer by another integer as a float # Arguments * x - The base * pow - The exponent # Return value `NaN` if both `x` and `pow` are `0u`, otherwise `x^pow` "] fn pow_with_uint(base: uint, pow: uint) -> float { if base == 0u { if pow == 0u { ret NaN as float; } ret 0.; } let mut my_pow = pow; let mut total = 1f; let mut multiplier = base as float; while (my_pow > 0u) { if my_pow % 2u == 1u { total = total * multiplier; } my_pow /= 2u; multiplier *= multiplier; } ret total; } fn is_positive(x: float) -> bool { f64::is_positive(x as f64) } fn is_negative(x: float) -> bool { f64::is_negative(x as f64) } fn is_nonpositive(x: float) -> bool { f64::is_nonpositive(x as f64) } fn is_nonnegative(x: float) -> bool { f64::is_nonnegative(x as f64) } fn is_zero(x: float) -> bool { f64::is_zero(x as f64) } fn is_infinite(x: float) -> bool { f64::is_infinite(x as f64) } fn is_finite(x: float) -> bool { f64::is_finite(x as f64) } fn is_NaN(x: float) -> bool { f64::is_NaN(x as f64) } fn abs(x: float) -> float { f64::abs(x as f64) as float } fn sqrt(x: float) -> float { f64::sqrt(x as f64) as float } fn atan(x: float) -> float { f64::atan(x as f64) as float } fn sin(x: float) -> float { f64::sin(x as f64) as float } fn cos(x: float) -> float { f64::cos(x as f64) as float } fn tan(x: float) -> float { f64::tan(x as f64) as float } impl num of num::num for float { fn add(&&other: float) -> float { ret self + other; } fn sub(&&other: float) -> float { ret self - other; } fn mul(&&other: float) -> float { ret self * other; } fn div(&&other: float) -> float { ret self / other; } fn modulo(&&other: float) -> float { ret self % other; } fn neg() -> float { ret -self; } fn to_int() -> int { ret self as int; } fn from_int(n: int) -> float { ret n as float; } } #[test] fn test_from_str() { assert from_str("3") == some(3.); assert from_str("3") == some(3.); assert from_str("3.14") == some(3.14); assert from_str("+3.14") == some(3.14); assert from_str("-3.14") == some(-3.14); assert from_str("2.5E10") == some(25000000000.); assert from_str("2.5e10") == some(25000000000.); assert from_str("25000000000.E-10") == some(2.5); assert from_str(".") == some(0.); assert from_str(".e1") == some(0.); assert from_str(".e-1") == some(0.); assert from_str("5.") == some(5.); assert from_str(".5") == some(0.5); assert from_str("0.5") == some(0.5); assert from_str("0.5") == some(0.5); assert from_str("0.5") == some(0.5); assert from_str("-.5") == some(-0.5); assert from_str("-.5") == some(-0.5); assert from_str("-5") == some(-5.); assert from_str("-0") == some(-0.); assert from_str("0") == some(0.); assert from_str("inf") == some(infinity); assert from_str("-inf") == some(neg_infinity); // note: NaN != NaN, hence this slightly complex test alt from_str("NaN") { some(f) { assert is_NaN(f); } none { fail; } } assert from_str("") == none; assert from_str("x") == none; assert from_str(" ") == none; assert from_str(" ") == none; assert from_str("e") == none; assert from_str("E") == none; assert from_str("E1") == none; assert from_str("1e1e1") == none; assert from_str("1e1.1") == none; assert from_str("1e1-1") == none; } #[test] fn test_positive() { assert(is_positive(infinity)); assert(is_positive(1.)); assert(is_positive(0.)); assert(!is_positive(-1.)); assert(!is_positive(neg_infinity)); assert(!is_positive(1./neg_infinity)); assert(!is_positive(NaN)); } #[test] fn test_negative() { assert(!is_negative(infinity)); assert(!is_negative(1.)); assert(!is_negative(0.)); assert(is_negative(-1.)); assert(is_negative(neg_infinity)); assert(is_negative(1./neg_infinity)); assert(!is_negative(NaN)); } #[test] fn test_nonpositive() { assert(!is_nonpositive(infinity)); assert(!is_nonpositive(1.)); assert(!is_nonpositive(0.)); assert(is_nonpositive(-1.)); assert(is_nonpositive(neg_infinity)); assert(is_nonpositive(1./neg_infinity)); assert(!is_nonpositive(NaN)); } #[test] fn test_nonnegative() { assert(is_nonnegative(infinity)); assert(is_nonnegative(1.)); assert(is_nonnegative(0.)); assert(!is_nonnegative(-1.)); assert(!is_nonnegative(neg_infinity)); assert(!is_nonnegative(1./neg_infinity)); assert(!is_nonnegative(NaN)); } #[test] fn test_to_str_inf() { assert to_str(infinity, 10u) == "inf"; assert to_str(-infinity, 10u) == "-inf"; } #[test] fn test_ifaces() { fn test(ten: U) { assert (ten.to_int() == 10); let two = ten.from_int(2); assert (two.to_int() == 2); assert (ten.add(two) == ten.from_int(12)); assert (ten.sub(two) == ten.from_int(8)); assert (ten.mul(two) == ten.from_int(20)); assert (ten.div(two) == ten.from_int(5)); assert (ten.modulo(two) == ten.from_int(0)); } test(10.0); } // // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // End: //