// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. // The classification code for the x86_64 ABI is taken from the clay language // https://github.com/jckarter/clay/blob/master/compiler/src/externals.cpp use lib::llvm::{llvm, TypeRef, Integer, Pointer, Float, Double}; use lib::llvm::{Struct, Array, Attribute}; use lib::llvm::{StructRetAttribute, ByValAttribute}; use lib::llvm::struct_tys; use lib::llvm::True; use middle::trans::common::*; use middle::trans::cabi::*; use core::libc::c_uint; use core::option; use core::option::Option; use core::uint; use core::vec; #[deriving(Eq)] enum x86_64_reg_class { no_class, integer_class, sse_fs_class, sse_fv_class, sse_ds_class, sse_dv_class, sse_int_class, sseup_class, x87_class, x87up_class, complex_x87_class, memory_class } fn is_sse(c: x86_64_reg_class) -> bool { return match c { sse_fs_class | sse_fv_class | sse_ds_class | sse_dv_class => true, _ => false }; } fn is_ymm(cls: &[x86_64_reg_class]) -> bool { let len = cls.len(); return (len > 2u && is_sse(cls[0]) && cls[1] == sseup_class && cls[2] == sseup_class) || (len > 3u && is_sse(cls[1]) && cls[2] == sseup_class && cls[3] == sseup_class); } fn classify_ty(ty: TypeRef) -> ~[x86_64_reg_class] { fn align(off: uint, ty: TypeRef) -> uint { let a = ty_align(ty); return (off + a - 1u) / a * a; } fn ty_align(ty: TypeRef) -> uint { unsafe { return match llvm::LLVMGetTypeKind(ty) { Integer => { ((llvm::LLVMGetIntTypeWidth(ty) as uint) + 7) / 8 } Pointer => 8, Float => 4, Double => 8, Struct => { if llvm::LLVMIsPackedStruct(ty) == True { 1 } else { let str_tys = struct_tys(ty); str_tys.iter().fold(1, |a, t| uint::max(a, ty_align(*t))) } } Array => { let elt = llvm::LLVMGetElementType(ty); ty_align(elt) } _ => fail!("ty_size: unhandled type") }; } } fn ty_size(ty: TypeRef) -> uint { unsafe { return match llvm::LLVMGetTypeKind(ty) { Integer => { ((llvm::LLVMGetIntTypeWidth(ty) as uint) + 7) / 8 } Pointer => 8, Float => 4, Double => 8, Struct => { if llvm::LLVMIsPackedStruct(ty) == True { let str_tys = struct_tys(ty); str_tys.iter().fold(0, |s, t| s + ty_size(*t)) } else { let str_tys = struct_tys(ty); let size = str_tys.iter().fold(0, |s, t| align(s, *t) + ty_size(*t)); align(size, ty) } } Array => { let len = llvm::LLVMGetArrayLength(ty) as uint; let elt = llvm::LLVMGetElementType(ty); let eltsz = ty_size(elt); len * eltsz } _ => fail!("ty_size: unhandled type") }; } } fn all_mem(cls: &mut [x86_64_reg_class]) { for uint::range(0, cls.len()) |i| { cls[i] = memory_class; } } fn unify(cls: &mut [x86_64_reg_class], i: uint, newv: x86_64_reg_class) { if cls[i] == newv { return; } else if cls[i] == no_class { cls[i] = newv; } else if newv == no_class { return; } else if cls[i] == memory_class || newv == memory_class { cls[i] = memory_class; } else if cls[i] == integer_class || newv == integer_class { cls[i] = integer_class; } else if cls[i] == x87_class || cls[i] == x87up_class || cls[i] == complex_x87_class || newv == x87_class || newv == x87up_class || newv == complex_x87_class { cls[i] = memory_class; } else { cls[i] = newv; } } fn classify_struct(tys: &[TypeRef], cls: &mut [x86_64_reg_class], i: uint, off: uint) { let mut field_off = off; for tys.each |ty| { field_off = align(field_off, *ty); classify(*ty, cls, i, field_off); field_off += ty_size(*ty); } } fn classify(ty: TypeRef, cls: &mut [x86_64_reg_class], ix: uint, off: uint) { unsafe { let t_align = ty_align(ty); let t_size = ty_size(ty); let misalign = off % t_align; if misalign != 0u { let mut i = off / 8u; let e = (off + t_size + 7u) / 8u; while i < e { unify(cls, ix + i, memory_class); i += 1u; } return; } match llvm::LLVMGetTypeKind(ty) as int { 8 /* integer */ | 12 /* pointer */ => { unify(cls, ix + off / 8u, integer_class); } 2 /* float */ => { if off % 8u == 4u { unify(cls, ix + off / 8u, sse_fv_class); } else { unify(cls, ix + off / 8u, sse_fs_class); } } 3 /* double */ => { unify(cls, ix + off / 8u, sse_ds_class); } 10 /* struct */ => { classify_struct(struct_tys(ty), cls, ix, off); } 11 /* array */ => { let elt = llvm::LLVMGetElementType(ty); let eltsz = ty_size(elt); let len = llvm::LLVMGetArrayLength(ty) as uint; let mut i = 0u; while i < len { classify(elt, cls, ix, off + i * eltsz); i += 1u; } } _ => fail!("classify: unhandled type") } } } fn fixup(ty: TypeRef, cls: &mut [x86_64_reg_class]) { unsafe { let mut i = 0u; let llty = llvm::LLVMGetTypeKind(ty) as int; let e = cls.len(); if cls.len() > 2u && (llty == 10 /* struct */ || llty == 11 /* array */) { if is_sse(cls[i]) { i += 1u; while i < e { if cls[i] != sseup_class { all_mem(cls); return; } i += 1u; } } else { all_mem(cls); return } } else { while i < e { if cls[i] == memory_class { all_mem(cls); return; } if cls[i] == x87up_class { // for darwin // cls[i] = sse_ds_class; all_mem(cls); return; } if cls[i] == sseup_class { cls[i] = sse_int_class; } else if is_sse(cls[i]) { i += 1; while i != e && cls[i] == sseup_class { i += 1u; } } else if cls[i] == x87_class { i += 1; while i != e && cls[i] == x87up_class { i += 1u; } } else { i += 1; } } } } } let words = (ty_size(ty) + 7) / 8; let mut cls = vec::from_elem(words, no_class); if words > 4 { all_mem(cls); let cls = cls; return cls; } classify(ty, cls, 0, 0); fixup(ty, cls); return cls; } fn llreg_ty(cls: &[x86_64_reg_class]) -> TypeRef { fn llvec_len(cls: &[x86_64_reg_class]) -> uint { let mut len = 1u; for cls.each |c| { if *c != sseup_class { break; } len += 1u; } return len; } unsafe { let mut tys = ~[]; let mut i = 0u; let e = cls.len(); while i < e { match cls[i] { integer_class => { tys.push(T_i64()); } sse_fv_class => { let vec_len = llvec_len(vec::tailn(cls, i + 1u)) * 2u; let vec_ty = llvm::LLVMVectorType(T_f32(), vec_len as c_uint); tys.push(vec_ty); i += vec_len; loop; } sse_fs_class => { tys.push(T_f32()); } sse_ds_class => { tys.push(T_f64()); } _ => fail!("llregtype: unhandled class") } i += 1u; } return T_struct(tys, false); } } fn x86_64_tys(atys: &[TypeRef], rty: TypeRef, ret_def: bool) -> FnType { fn is_reg_ty(ty: TypeRef) -> bool { unsafe { return match llvm::LLVMGetTypeKind(ty) as int { 8 /* integer */ | 12 /* pointer */ | 2 /* float */ | 3 /* double */ => true, _ => false }; } } fn is_pass_byval(cls: &[x86_64_reg_class]) -> bool { return cls.len() > 0 && (cls[0] == memory_class || cls[0] == x87_class || cls[0] == complex_x87_class); } fn is_ret_bysret(cls: &[x86_64_reg_class]) -> bool { return cls.len() > 0 && cls[0] == memory_class; } fn x86_64_ty(ty: TypeRef, is_mem_cls: &fn(cls: &[x86_64_reg_class]) -> bool, attr: Attribute) -> (LLVMType, Option) { let mut cast = false; let mut ty_attr = option::None; let mut llty = ty; if !is_reg_ty(ty) { let cls = classify_ty(ty); if is_mem_cls(cls) { llty = T_ptr(ty); ty_attr = option::Some(attr); } else { cast = true; llty = llreg_ty(cls); } } return (LLVMType { cast: cast, ty: llty }, ty_attr); } let mut arg_tys = ~[]; let mut attrs = ~[]; for atys.each |t| { let (ty, attr) = x86_64_ty(*t, is_pass_byval, ByValAttribute); arg_tys.push(ty); attrs.push(attr); } let mut (ret_ty, ret_attr) = x86_64_ty(rty, is_ret_bysret, StructRetAttribute); let sret = ret_attr.is_some(); if sret { arg_tys = vec::append(~[ret_ty], arg_tys); ret_ty = LLVMType { cast: false, ty: T_void() }; attrs = vec::append(~[ret_attr], attrs); } else if !ret_def { ret_ty = LLVMType { cast: false, ty: T_void() }; } return FnType { arg_tys: arg_tys, ret_ty: ret_ty, attrs: attrs, sret: sret }; } enum X86_64_ABIInfo { X86_64_ABIInfo } impl ABIInfo for X86_64_ABIInfo { fn compute_info(&self, atys: &[TypeRef], rty: TypeRef, ret_def: bool) -> FnType { return x86_64_tys(atys, rty, ret_def); } } pub fn abi_info() -> @ABIInfo { return @X86_64_ABIInfo as @ABIInfo; }