import option::{some, none}; import syntax::{visit, ast_util}; import syntax::ast::*; import syntax::codemap::span; import ty::{kind, kind_copyable, kind_sendable, kind_noncopyable}; import driver::session::session; // Kind analysis pass. There are three kinds: // // sendable: scalar types, and unique types containing only sendable types // copyable: boxes, closures, and uniques containing copyable types // noncopyable: resources, or unique types containing resources // // This pass ensures that type parameters are only instantiated with types // whose kinds are equal or less general than the way the type parameter was // annotated (with the `send` or `copy` keyword). // // It also verifies that noncopyable kinds are not copied. Sendability is not // applied, since none of our language primitives send. Instead, the sending // primitives in the stdlib are explicitly annotated to only take sendable // types. fn kind_to_str(k: kind) -> str { alt k { kind_sendable { "sendable" } kind_copyable { "copyable" } kind_noncopyable { "noncopyable" } } } type rval_map = std::map::hashmap; type ctx = {tcx: ty::ctxt, rval_map: rval_map, method_map: typeck::method_map, last_uses: last_use::last_uses}; fn check_crate(tcx: ty::ctxt, method_map: typeck::method_map, last_uses: last_use::last_uses, crate: @crate) -> rval_map { let ctx = {tcx: tcx, rval_map: std::map::new_int_hash(), method_map: method_map, last_uses: last_uses}; let visit = visit::mk_vt(@{ visit_expr: check_expr, visit_stmt: check_stmt, visit_block: check_block, visit_fn: check_fn with *visit::default_visitor() }); visit::visit_crate(*crate, ctx, visit); tcx.sess.abort_if_errors(); ret ctx.rval_map; } // Yields the appropriate function to check the kind of closed over // variables. `id` is the node_id for some expression that creates the // closure. fn with_appropriate_checker(cx: ctx, id: node_id, b: block(fn@(ctx, ty::t, sp: span))) { let fty = ty::node_id_to_monotype(cx.tcx, id); alt ty::ty_fn_proto(cx.tcx, fty) { proto_uniq { b(check_send); } proto_box { b(check_copy); } proto_bare { b(check_none); } proto_any | proto_block { /* no check needed */ } } } // Check that the free variables used in a shared/sendable closure conform // to the copy/move kind bounds. Then recursively check the function body. fn check_fn(fk: visit::fn_kind, decl: fn_decl, body: blk, sp: span, id: node_id, cx: ctx, v: visit::vt) { // n.b.: This could be the body of either a fn decl or a fn expr. In the // former case, the prototype will be proto_bare and no check occurs. In // the latter case, we do not check the variables that in the capture // clause (as we don't have access to that here) but just those that // appear free. The capture clauses are checked below, in check_expr(). // // We could do this check also in check_expr(), but it seems more // "future-proof" to do it this way, as check_fn_body() is supposed to be // the common flow point for all functions that appear in the AST. with_appropriate_checker(cx, id) { |checker| for @{def, span} in *freevars::get_freevars(cx.tcx, id) { let id = ast_util::def_id_of_def(def).node; let ty = ty::node_id_to_type(cx.tcx, id); checker(cx, ty, span); } } visit::visit_fn(fk, decl, body, sp, id, cx, v); } fn check_fn_cap_clause(cx: ctx, id: node_id, cap_clause: capture_clause) { // Check that the variables named in the clause which are not free vars // (if any) are also legal. freevars are checked above in check_fn(). // This is kind of a degenerate case, as captured variables will generally // appear free in the body. let freevars = freevars::get_freevars(cx.tcx, id); let freevar_ids = vec::map(*freevars, { |freevar| ast_util::def_id_of_def(freevar.def).node }); //log("freevar_ids", freevar_ids); with_appropriate_checker(cx, id) { |checker| let check_var = fn@(&&cap_item: @capture_item) { let cap_def = cx.tcx.def_map.get(cap_item.id); let cap_def_id = ast_util::def_id_of_def(cap_def).node; if !vec::member(cap_def_id, freevar_ids) { let ty = ty::node_id_to_type(cx.tcx, cap_def_id); checker(cx, ty, cap_item.span); } }; vec::iter(cap_clause.copies, check_var); vec::iter(cap_clause.moves, check_var); } } fn check_block(b: blk, cx: ctx, v: visit::vt) { alt b.node.expr { some(ex) { maybe_copy(cx, ex); } _ {} } visit::visit_block(b, cx, v); } fn check_expr(e: @expr, cx: ctx, v: visit::vt) { alt e.node { expr_assign(_, ex) | expr_assign_op(_, _, ex) | expr_unary(box(_), ex) | expr_unary(uniq(_), ex) | expr_ret(some(ex)) { maybe_copy(cx, ex); } expr_copy(expr) { check_copy_ex(cx, expr, false); } // Vector add copies. expr_binary(add, ls, rs) { maybe_copy(cx, ls); maybe_copy(cx, rs); } expr_rec(fields, def) { for field in fields { maybe_copy(cx, field.node.expr); } alt def { some(ex) { // All noncopyable fields must be overridden let t = ty::expr_ty(cx.tcx, ex); let ty_fields = alt ty::struct(cx.tcx, t) { ty::ty_rec(f) { f } }; for tf in ty_fields { if !vec::any(fields, {|f| f.node.ident == tf.ident}) && !ty::kind_can_be_copied(ty::type_kind(cx.tcx, tf.mt.ty)) { cx.tcx.sess.span_err(ex.span, "copying a noncopyable value"); } } } _ {} } } expr_tup(exprs) | expr_vec(exprs, _) { for expr in exprs { maybe_copy(cx, expr); } } expr_bind(_, args) { for a in args { alt a { some(ex) { maybe_copy(cx, ex); } _ {} } } } expr_call(f, args, _) { let i = 0u; for arg_t in ty::ty_fn_args(cx.tcx, ty::expr_ty(cx.tcx, f)) { alt arg_t.mode { by_copy { maybe_copy(cx, args[i]); } _ {} } i += 1u; } } expr_path(_) { let substs = ty::node_id_to_ty_param_substs_opt_and_ty(cx.tcx, e.id); alt substs.substs { some(ts) { let did = ast_util::def_id_of_def(cx.tcx.def_map.get(e.id)); let bounds = ty::lookup_item_type(cx.tcx, did).bounds; let i = 0u; for ty in ts { let kind = ty::type_kind(cx.tcx, ty); let p_kind = ty::param_bounds_to_kind(bounds[i]); if !ty::kind_lteq(p_kind, kind) { cx.tcx.sess.span_err(e.span, "instantiating a " + kind_to_str(p_kind) + " type parameter with a " + kind_to_str(kind) + " type"); } i += 1u; } } none {} } } expr_ternary(_, a, b) { maybe_copy(cx, a); maybe_copy(cx, b); } expr_fn(_, _, _, cap_clause) { check_fn_cap_clause(cx, e.id, *cap_clause); } _ { } } visit::visit_expr(e, cx, v); } fn check_stmt(stmt: @stmt, cx: ctx, v: visit::vt) { alt stmt.node { stmt_decl(@{node: decl_local(locals), _}, _) { for (_, local) in locals { alt local.node.init { some({op: init_assign, expr}) { maybe_copy(cx, expr); } _ {} } } } _ {} } visit::visit_stmt(stmt, cx, v); } fn maybe_copy(cx: ctx, ex: @expr) { check_copy_ex(cx, ex, true); } fn check_copy_ex(cx: ctx, ex: @expr, _warn: bool) { if ty::expr_is_lval(cx.method_map, ex) && !cx.last_uses.contains_key(ex.id) { let ty = ty::expr_ty(cx.tcx, ex); check_copy(cx, ty, ex.span); // FIXME turn this on again once vector types are no longer unique. // Right now, it is too annoying to be useful. /* if warn && ty::type_is_unique(cx.tcx, ty) { cx.tcx.sess.span_warn(ex.span, "copying a unique value"); }*/ } } fn check_copy(cx: ctx, ty: ty::t, sp: span) { if !ty::kind_can_be_copied(ty::type_kind(cx.tcx, ty)) { cx.tcx.sess.span_err(sp, "copying a noncopyable value"); } } fn check_send(cx: ctx, ty: ty::t, sp: span) { if !ty::kind_can_be_sent(ty::type_kind(cx.tcx, ty)) { cx.tcx.sess.span_err(sp, "not a sendable value"); } } fn check_none(cx: ctx, _ty: ty::t, sp: span) { cx.tcx.sess.span_err(sp, "attempted dynamic environment capture"); } // // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // End: //