use rustc::ty::Ty; use rustc::mir; use crate::*; pub trait EvalContextExt<'tcx> { fn pointer_inbounds( &self, ptr: Pointer ) -> InterpResult<'tcx>; fn ptr_op( &self, bin_op: mir::BinOp, left: ImmTy<'tcx, Tag>, right: ImmTy<'tcx, Tag>, ) -> InterpResult<'tcx, (Scalar, bool)>; fn ptr_int_arithmetic( &self, bin_op: mir::BinOp, left: Pointer, right: u128, signed: bool, ) -> InterpResult<'tcx, (Scalar, bool)>; fn ptr_eq( &self, left: Scalar, right: Scalar, ) -> InterpResult<'tcx, bool>; fn pointer_offset_inbounds( &self, ptr: Scalar, pointee_ty: Ty<'tcx>, offset: i64, ) -> InterpResult<'tcx, Scalar>; } impl<'mir, 'tcx> EvalContextExt<'tcx> for super::MiriEvalContext<'mir, 'tcx> { /// Test if the pointer is in-bounds of a live allocation. #[inline] fn pointer_inbounds(&self, ptr: Pointer) -> InterpResult<'tcx> { let (size, _align) = self.memory().get_size_and_align(ptr.alloc_id, AllocCheck::Live)?; ptr.check_in_alloc(size, CheckInAllocMsg::InboundsTest) } fn ptr_op( &self, bin_op: mir::BinOp, left: ImmTy<'tcx, Tag>, right: ImmTy<'tcx, Tag>, ) -> InterpResult<'tcx, (Scalar, bool)> { use rustc::mir::BinOp::*; trace!("ptr_op: {:?} {:?} {:?}", *left, bin_op, *right); // If intptrcast is enabled and the operation is not an offset // we can force the cast from pointers to integer addresses and // then dispatch to rustc binary operation method if self.memory().extra.rng.is_some() && bin_op != Offset { let l_bits = self.force_bits(left.imm.to_scalar()?, left.layout.size)?; let r_bits = self.force_bits(right.imm.to_scalar()?, right.layout.size)?; let left = ImmTy::from_scalar(Scalar::from_uint(l_bits, left.layout.size), left.layout); let right = ImmTy::from_scalar(Scalar::from_uint(r_bits, left.layout.size), right.layout); return self.binary_op(bin_op, left, right); } // Operations that support fat pointers match bin_op { Eq | Ne => { let eq = match (*left, *right) { (Immediate::Scalar(left), Immediate::Scalar(right)) => self.ptr_eq(left.not_undef()?, right.not_undef()?)?, (Immediate::ScalarPair(left1, left2), Immediate::ScalarPair(right1, right2)) => self.ptr_eq(left1.not_undef()?, right1.not_undef()?)? && self.ptr_eq(left2.not_undef()?, right2.not_undef()?)?, _ => bug!("Type system should not allow comparing Scalar with ScalarPair"), }; return Ok((Scalar::from_bool(if bin_op == Eq { eq } else { !eq }), false)); } _ => {}, } // Now we expect no more fat pointers. let left_layout = left.layout; let left = left.to_scalar()?; let right_layout = right.layout; let right = right.to_scalar()?; debug_assert!(left.is_ptr() || right.is_ptr() || bin_op == Offset); match bin_op { Offset => { let pointee_ty = left_layout.ty .builtin_deref(true) .expect("Offset called on non-ptr type") .ty; let ptr = self.pointer_offset_inbounds( left, pointee_ty, right.to_isize(self)?, )?; Ok((ptr, false)) } // These need both to be pointer, and fail if they are not in the same location Lt | Le | Gt | Ge | Sub if left.is_ptr() && right.is_ptr() => { let left = left.to_ptr().expect("we checked is_ptr"); let right = right.to_ptr().expect("we checked is_ptr"); if left.alloc_id == right.alloc_id { let res = match bin_op { Lt => left.offset < right.offset, Le => left.offset <= right.offset, Gt => left.offset > right.offset, Ge => left.offset >= right.offset, Sub => { // subtract the offsets let left_offset = Scalar::from_uint(left.offset.bytes(), self.memory().pointer_size()); let right_offset = Scalar::from_uint(right.offset.bytes(), self.memory().pointer_size()); let layout = self.layout_of(self.tcx.types.usize)?; return self.binary_op( Sub, ImmTy::from_scalar(left_offset, layout), ImmTy::from_scalar(right_offset, layout), ) } _ => bug!("We already established it has to be one of these operators."), }; Ok((Scalar::from_bool(res), false)) } else { // Both are pointers, but from different allocations. err!(InvalidPointerMath) } } Gt | Ge if left.is_ptr() && right.is_bits() => { // "ptr >[=] integer" can be tested if the integer is small enough. let left = left.to_ptr().expect("we checked is_ptr"); let right = right.to_bits(self.memory().pointer_size()).expect("we checked is_bits"); let (_alloc_size, alloc_align) = self.memory() .get_size_and_align(left.alloc_id, AllocCheck::MaybeDead) .expect("alloc info with MaybeDead cannot fail"); let min_ptr_val = u128::from(alloc_align.bytes()) + u128::from(left.offset.bytes()); let result = match bin_op { Gt => min_ptr_val > right, Ge => min_ptr_val >= right, _ => bug!(), }; if result { // Definitely true! Ok((Scalar::from_bool(true), false)) } else { // Sorry, can't tell. err!(InvalidPointerMath) } } // These work if the left operand is a pointer, and the right an integer Add | BitAnd | Sub | Rem if left.is_ptr() && right.is_bits() => { // Cast to i128 is fine as we checked the kind to be ptr-sized self.ptr_int_arithmetic( bin_op, left.to_ptr().expect("we checked is_ptr"), right.to_bits(self.memory().pointer_size()).expect("we checked is_bits"), right_layout.abi.is_signed(), ) } // Commutative operators also work if the integer is on the left Add | BitAnd if left.is_bits() && right.is_ptr() => { // This is a commutative operation, just swap the operands self.ptr_int_arithmetic( bin_op, right.to_ptr().expect("we checked is_ptr"), left.to_bits(self.memory().pointer_size()).expect("we checked is_bits"), left_layout.abi.is_signed(), ) } // Nothing else works _ => err!(InvalidPointerMath), } } fn ptr_eq( &self, left: Scalar, right: Scalar, ) -> InterpResult<'tcx, bool> { let size = self.pointer_size(); Ok(match (left, right) { (Scalar::Raw { .. }, Scalar::Raw { .. }) => left.to_bits(size)? == right.to_bits(size)?, (Scalar::Ptr(left), Scalar::Ptr(right)) => { // Comparison illegal if one of them is out-of-bounds, *unless* they // are in the same allocation. if left.alloc_id == right.alloc_id { left.offset == right.offset } else { // Make sure both pointers are in-bounds. // This accepts one-past-the end. Thus, there is still technically // some non-determinism that we do not fully rule out when two // allocations sit right next to each other. The C/C++ standards are // somewhat fuzzy about this case, so pragmatically speaking I think // for now this check is "good enough". // FIXME: Once we support intptrcast, we could try to fix these holes. // Dead allocations in miri cannot overlap with live allocations, but // on read hardware this can easily happen. Thus for comparisons we require // both pointers to be live. if self.pointer_inbounds(left).is_ok() && self.pointer_inbounds(right).is_ok() { // Two in-bounds pointers in different allocations are different. false } else { return err!(InvalidPointerMath); } } } // Comparing ptr and integer. (Scalar::Ptr(ptr), Scalar::Raw { data, size }) | (Scalar::Raw { data, size }, Scalar::Ptr(ptr)) => { assert_eq!(size as u64, self.pointer_size().bytes()); let bits = data as u64; // Case I: Comparing real pointers with "small" integers. // Really we should only do this for NULL, but pragmatically speaking on non-bare-metal systems, // an allocation will never be at the very bottom of the address space. // Such comparisons can arise when comparing empty slices, which sometimes are "fake" // integer pointers (okay because the slice is empty) and sometimes point into a // real allocation. // The most common source of such integer pointers is `NonNull::dangling()`, which // equals the type's alignment. i128 might have an alignment of 16 bytes, but few types have // alignment 32 or higher, hence the limit of 32. // FIXME: Once we support intptrcast, we could try to fix these holes. if bits < 32 { // Test if the pointer can be different from NULL or not. // We assume that pointers that are not NULL are also not "small". if !self.memory().ptr_may_be_null(ptr) { return Ok(false); } } let (alloc_size, alloc_align) = self.memory() .get_size_and_align(ptr.alloc_id, AllocCheck::MaybeDead) .expect("alloc info with MaybeDead cannot fail"); // Case II: Alignment gives it away if ptr.offset.bytes() % alloc_align.bytes() == 0 { // The offset maintains the allocation alignment, so we know `base+offset` // is aligned by `alloc_align`. // FIXME: We could be even more general, e.g., offset 2 into a 4-aligned // allocation cannot equal 3. if bits % alloc_align.bytes() != 0 { // The integer is *not* aligned. So they cannot be equal. return Ok(false); } } // Case III: The integer is too big, and the allocation goes on a bit // without wrapping around the address space. { // Compute the highest address at which this allocation could live. // Substract one more, because it must be possible to add the size // to the base address without overflowing; that is, the very last address // of the address space is never dereferencable (but it can be in-bounds, i.e., // one-past-the-end). let max_base_addr = ((1u128 << self.pointer_size().bits()) - u128::from(alloc_size.bytes()) - 1 ) as u64; if let Some(max_addr) = max_base_addr.checked_add(ptr.offset.bytes()) { if bits > max_addr { // The integer is too big, this cannot possibly be equal. return Ok(false) } } } // None of the supported cases. return err!(InvalidPointerMath); } }) } fn ptr_int_arithmetic( &self, bin_op: mir::BinOp, left: Pointer, right: u128, signed: bool, ) -> InterpResult<'tcx, (Scalar, bool)> { use rustc::mir::BinOp::*; fn map_to_primval((res, over): (Pointer, bool)) -> (Scalar, bool) { (Scalar::Ptr(res), over) } Ok(match bin_op { Sub => // The only way this can overflow is by underflowing, so signdeness of the right // operands does not matter. map_to_primval(left.overflowing_signed_offset(-(right as i128), self)), Add if signed => map_to_primval(left.overflowing_signed_offset(right as i128, self)), Add if !signed => map_to_primval(left.overflowing_offset(Size::from_bytes(right as u64), self)), BitAnd if !signed => { let ptr_base_align = self.memory().get(left.alloc_id)?.align.bytes(); let base_mask = { // FIXME: use `interpret::truncate`, once that takes a `Size` instead of a `Layout`. let shift = 128 - self.memory().pointer_size().bits(); let value = !(ptr_base_align as u128 - 1); // Truncate (shift left to drop out leftover values, shift right to fill with zeroes). (value << shift) >> shift }; let ptr_size = self.memory().pointer_size(); trace!("ptr BitAnd, align {}, operand {:#010x}, base_mask {:#010x}", ptr_base_align, right, base_mask); if right & base_mask == base_mask { // Case 1: the base address bits are all preserved, i.e., right is all-1 there. let offset = (left.offset.bytes() as u128 & right) as u64; ( Scalar::Ptr(Pointer::new_with_tag( left.alloc_id, Size::from_bytes(offset), left.tag, )), false, ) } else if right & base_mask == 0 { // Case 2: the base address bits are all taken away, i.e., right is all-0 there. let v = Scalar::from_uint((left.offset.bytes() as u128) & right, ptr_size); (v, false) } else { return err!(ReadPointerAsBytes); } } Rem if !signed => { // Doing modulo a divisor of the alignment is allowed. // (Intuition: modulo a divisor leaks less information.) let ptr_base_align = self.memory().get(left.alloc_id)?.align.bytes(); let right = right as u64; let ptr_size = self.memory().pointer_size(); if right == 1 { // Modulo 1 is always 0. (Scalar::from_uint(0u32, ptr_size), false) } else if ptr_base_align % right == 0 { // The base address would be cancelled out by the modulo operation, so we can // just take the modulo of the offset. ( Scalar::from_uint((left.offset.bytes() % right) as u128, ptr_size), false, ) } else { return err!(ReadPointerAsBytes); } } _ => { let msg = format!( "unimplemented binary op on pointer {:?}: {:?}, {:?} ({})", bin_op, left, right, if signed { "signed" } else { "unsigned" } ); return err!(Unimplemented(msg)); } }) } /// Raises an error if the offset moves the pointer outside of its allocation. /// We consider ZSTs their own huge allocation that doesn't overlap with anything (and nothing /// moves in there because the size is 0). We also consider the NULL pointer its own separate /// allocation, and all the remaining integers pointers their own allocation. fn pointer_offset_inbounds( &self, ptr: Scalar, pointee_ty: Ty<'tcx>, offset: i64, ) -> InterpResult<'tcx, Scalar> { // FIXME: assuming here that type size is less than `i64::max_value()`. let pointee_size = self.layout_of(pointee_ty)?.size.bytes() as i64; let offset = offset .checked_mul(pointee_size) .ok_or_else(|| InterpError::Overflow(mir::BinOp::Mul))?; // Now let's see what kind of pointer this is. if let Scalar::Ptr(ptr) = ptr { // Both old and new pointer must be in-bounds of a *live* allocation. // (Of the same allocation, but that part is trivial with our representation.) self.pointer_inbounds(ptr)?; let ptr = ptr.signed_offset(offset, self)?; self.pointer_inbounds(ptr)?; Ok(Scalar::Ptr(ptr)) } else { // An integer pointer. They can only be offset by 0, and we pretend there // is a little zero-sized allocation here. if offset == 0 { Ok(ptr) } else { err!(InvalidPointerMath) } } } }