// Copyright 2016 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. // An implementation of the Blake2b cryptographic hash function. // The implementation closely follows: https://tools.ietf.org/html/rfc7693 // // "BLAKE2 is a cryptographic hash function faster than MD5, SHA-1, SHA-2, and // SHA-3, yet is at least as secure as the latest standard SHA-3." // according to their own website :) // // Indeed this implementation is two to three times as fast as our SHA-256 // implementation. If you have the luxury of being able to use crates from // crates.io, you can go there and find still faster implementations. use std::mem; use std::slice; pub struct Blake2bCtx { b: [u8; 128], h: [u64; 8], t: [u64; 2], c: usize, outlen: u16, finalized: bool } impl ::std::fmt::Debug for Blake2bCtx { fn fmt(&self, fmt: &mut ::std::fmt::Formatter) -> Result<(), ::std::fmt::Error> { try!(write!(fmt, "hash: ")); for v in &self.h { try!(write!(fmt, "{:x}", v)); } Ok(()) } } #[inline(always)] fn b2b_g(v: &mut [u64; 16], a: usize, b: usize, c: usize, d: usize, x: u64, y: u64) { v[a] = v[a].wrapping_add(v[b]).wrapping_add(x); v[d] = (v[d] ^ v[a]).rotate_right(32); v[c] = v[c].wrapping_add(v[d]); v[b] = (v[b] ^ v[c]).rotate_right(24); v[a] = v[a].wrapping_add(v[b]).wrapping_add(y); v[d] = (v[d] ^ v[a]).rotate_right(16); v[c] = v[c].wrapping_add(v[d]); v[b] = (v[b] ^ v[c]).rotate_right(63); } // Initialization vector const BLAKE2B_IV: [u64; 8] = [ 0x6A09E667F3BCC908, 0xBB67AE8584CAA73B, 0x3C6EF372FE94F82B, 0xA54FF53A5F1D36F1, 0x510E527FADE682D1, 0x9B05688C2B3E6C1F, 0x1F83D9ABFB41BD6B, 0x5BE0CD19137E2179 ]; fn blake2b_compress(ctx: &mut Blake2bCtx, last: bool) { const SIGMA: [[usize; 16]; 12] = [ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 ], [14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 ], [11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 ], [7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 ], [9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 ], [2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 ], [12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 ], [13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 ], [6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 ], [10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 ], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 ], [14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 ] ]; let mut v: [u64; 16] = [ ctx.h[0], ctx.h[1], ctx.h[2], ctx.h[3], ctx.h[4], ctx.h[5], ctx.h[6], ctx.h[7], BLAKE2B_IV[0], BLAKE2B_IV[1], BLAKE2B_IV[2], BLAKE2B_IV[3], BLAKE2B_IV[4], BLAKE2B_IV[5], BLAKE2B_IV[6], BLAKE2B_IV[7], ]; v[12] ^= ctx.t[0]; // low 64 bits of offset v[13] ^= ctx.t[1]; // high 64 bits if last { v[14] = !v[14]; } { // Re-interpret the input buffer in the state as an array // of little-endian u64s, converting them to machine // endianness. It's OK to modify the buffer in place // since this is the last time this data will be accessed // before it's overwritten. let m: &mut [u64; 16] = unsafe { let b: &mut [u8; 128] = &mut ctx.b; ::std::mem::transmute(b) }; if cfg!(target_endian = "big") { for word in &mut m[..] { *word = u64::from_le(*word); } } for i in 0 .. 12 { b2b_g(&mut v, 0, 4, 8, 12, m[SIGMA[i][ 0]], m[SIGMA[i][ 1]]); b2b_g(&mut v, 1, 5, 9, 13, m[SIGMA[i][ 2]], m[SIGMA[i][ 3]]); b2b_g(&mut v, 2, 6, 10, 14, m[SIGMA[i][ 4]], m[SIGMA[i][ 5]]); b2b_g(&mut v, 3, 7, 11, 15, m[SIGMA[i][ 6]], m[SIGMA[i][ 7]]); b2b_g(&mut v, 0, 5, 10, 15, m[SIGMA[i][ 8]], m[SIGMA[i][ 9]]); b2b_g(&mut v, 1, 6, 11, 12, m[SIGMA[i][10]], m[SIGMA[i][11]]); b2b_g(&mut v, 2, 7, 8, 13, m[SIGMA[i][12]], m[SIGMA[i][13]]); b2b_g(&mut v, 3, 4, 9, 14, m[SIGMA[i][14]], m[SIGMA[i][15]]); } } for i in 0 .. 8 { ctx.h[i] ^= v[i] ^ v[i + 8]; } } fn blake2b_new(outlen: usize, key: &[u8]) -> Blake2bCtx { assert!(outlen > 0 && outlen <= 64 && key.len() <= 64); let mut ctx = Blake2bCtx { b: [0; 128], h: BLAKE2B_IV, t: [0; 2], c: 0, outlen: outlen as u16, finalized: false, }; ctx.h[0] ^= 0x01010000 ^ ((key.len() << 8) as u64) ^ (outlen as u64); if key.len() > 0 { blake2b_update(&mut ctx, key); ctx.c = ctx.b.len(); } ctx } fn blake2b_update(ctx: &mut Blake2bCtx, mut data: &[u8]) { assert!(!ctx.finalized, "Blake2bCtx already finalized"); let mut bytes_to_copy = data.len(); let mut space_in_buffer = ctx.b.len() - ctx.c; while bytes_to_copy > space_in_buffer { checked_mem_copy(data, &mut ctx.b[ctx.c .. ], space_in_buffer); ctx.t[0] = ctx.t[0].wrapping_add(ctx.b.len() as u64); if ctx.t[0] < (ctx.b.len() as u64) { ctx.t[1] += 1; } blake2b_compress(ctx, false); ctx.c = 0; data = &data[space_in_buffer .. ]; bytes_to_copy -= space_in_buffer; space_in_buffer = ctx.b.len(); } if bytes_to_copy > 0 { checked_mem_copy(data, &mut ctx.b[ctx.c .. ], bytes_to_copy); ctx.c += bytes_to_copy; } } fn blake2b_final(ctx: &mut Blake2bCtx) { assert!(!ctx.finalized, "Blake2bCtx already finalized"); ctx.t[0] = ctx.t[0].wrapping_add(ctx.c as u64); if ctx.t[0] < ctx.c as u64 { ctx.t[1] += 1; } while ctx.c < 128 { ctx.b[ctx.c] = 0; ctx.c += 1; } blake2b_compress(ctx, true); // Modify our buffer to little-endian format as it will be read // as a byte array. It's OK to modify the buffer in place since // this is the last time this data will be accessed. if cfg!(target_endian = "big") { for word in &mut ctx.h { *word = word.to_le(); } } ctx.finalized = true; } #[inline(always)] fn checked_mem_copy(from: &[T1], to: &mut [T2], byte_count: usize) { let from_size = from.len() * mem::size_of::(); let to_size = to.len() * mem::size_of::(); assert!(from_size >= byte_count); assert!(to_size >= byte_count); let from_byte_ptr = from.as_ptr() as * const u8; let to_byte_ptr = to.as_mut_ptr() as * mut u8; unsafe { ::std::ptr::copy_nonoverlapping(from_byte_ptr, to_byte_ptr, byte_count); } } pub fn blake2b(out: &mut [u8], key: &[u8], data: &[u8]) { let mut ctx = blake2b_new(out.len(), key); blake2b_update(&mut ctx, data); blake2b_final(&mut ctx); checked_mem_copy(&ctx.h, out, ctx.outlen as usize); } pub struct Blake2bHasher(Blake2bCtx); impl ::std::hash::Hasher for Blake2bHasher { fn write(&mut self, bytes: &[u8]) { blake2b_update(&mut self.0, bytes); } fn finish(&self) -> u64 { assert!(self.0.outlen == 8, "Hasher initialized with incompatible output length"); u64::from_le(self.0.h[0]) } } impl Blake2bHasher { pub fn new(outlen: usize, key: &[u8]) -> Blake2bHasher { Blake2bHasher(blake2b_new(outlen, key)) } pub fn finalize(&mut self) -> &[u8] { if !self.0.finalized { blake2b_final(&mut self.0); } debug_assert!(mem::size_of_val(&self.0.h) >= self.0.outlen as usize); let raw_ptr = (&self.0.h[..]).as_ptr() as * const u8; unsafe { slice::from_raw_parts(raw_ptr, self.0.outlen as usize) } } } impl ::std::fmt::Debug for Blake2bHasher { fn fmt(&self, fmt: &mut ::std::fmt::Formatter) -> Result<(), ::std::fmt::Error> { write!(fmt, "{:?}", self.0) } } #[cfg(test)] fn selftest_seq(out: &mut [u8], seed: u32) { let mut a: u32 = 0xDEAD4BADu32.wrapping_mul(seed); let mut b: u32 = 1; for i in 0 .. out.len() { let t: u32 = a.wrapping_add(b); a = b; b = t; out[i] = ((t >> 24) & 0xFF) as u8; } } #[test] fn blake2b_selftest() { use std::hash::Hasher; // grand hash of hash results const BLAKE2B_RES: [u8; 32] = [ 0xC2, 0x3A, 0x78, 0x00, 0xD9, 0x81, 0x23, 0xBD, 0x10, 0xF5, 0x06, 0xC6, 0x1E, 0x29, 0xDA, 0x56, 0x03, 0xD7, 0x63, 0xB8, 0xBB, 0xAD, 0x2E, 0x73, 0x7F, 0x5E, 0x76, 0x5A, 0x7B, 0xCC, 0xD4, 0x75 ]; // parameter sets const B2B_MD_LEN: [usize; 4] = [20, 32, 48, 64]; const B2B_IN_LEN: [usize; 6] = [0, 3, 128, 129, 255, 1024]; let mut data = [0u8; 1024]; let mut md = [0u8; 64]; let mut key = [0u8; 64]; let mut hasher = Blake2bHasher::new(32, &[]); for i in 0 .. 4 { let outlen = B2B_MD_LEN[i]; for j in 0 .. 6 { let inlen = B2B_IN_LEN[j]; selftest_seq(&mut data[.. inlen], inlen as u32); // unkeyed hash blake2b(&mut md[.. outlen], &[], &data[.. inlen]); hasher.write(&md[.. outlen]); // hash the hash selftest_seq(&mut key[0 .. outlen], outlen as u32); // keyed hash blake2b(&mut md[.. outlen], &key[.. outlen], &data[.. inlen]); hasher.write(&md[.. outlen]); // hash the hash } } // compute and compare the hash of hashes let md = hasher.finalize(); for i in 0 .. 32 { assert_eq!(md[i], BLAKE2B_RES[i]); } }