// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. #![feature(phase)] #[phase(syntax)] extern crate green; extern crate sync; use sync::Arc; green_start!(main) // // Utilities. // // returns an infinite iterator of repeated applications of f to x, // i.e. [x, f(x), f(f(x)), ...], as haskell iterate function. fn iterate<'a, T>(x: T, f: |&T|: 'a -> T) -> Iterate<'a, T> { Iterate {f: f, next: x} } struct Iterate<'a, T> { f: |&T|: 'a -> T, next: T } impl<'a, T> Iterator for Iterate<'a, T> { fn next(&mut self) -> Option { let mut res = (self.f)(&self.next); std::mem::swap(&mut res, &mut self.next); Some(res) } } // a linked list using borrowed next. enum List<'a, T> { Nil, Cons(T, &'a List<'a, T>) } struct ListIterator<'a, T> { cur: &'a List<'a, T> } impl<'a, T> List<'a, T> { fn iter(&'a self) -> ListIterator<'a, T> { ListIterator{cur: self} } } impl<'a, T> Iterator<&'a T> for ListIterator<'a, T> { fn next(&mut self) -> Option<&'a T> { match *self.cur { Nil => None, Cons(ref elt, next) => { self.cur = next; Some(elt) } } } } // // preprocess // // Takes a pieces p on the form [(y1, x1), (y2, x2), ...] and returns // every possible transformations (the 6 rotations with their // corresponding mirrored piece), with, as minimum coordinates, (0, // 0). If all is false, only generate half of the possibilities (used // to break the symetry of the board). fn transform(piece: Vec<(int, int)> , all: bool) -> Vec> { let mut res: Vec> = // rotations iterate(piece, |rot| rot.iter().map(|&(y, x)| (x + y, -y)).collect()) .take(if all {6} else {3}) // mirror .flat_map(|cur_piece| { iterate(cur_piece, |mir| mir.iter().map(|&(y, x)| (x, y)).collect()) .take(2) }).collect(); // translating to (0, 0) as minimum coordinates. for cur_piece in res.mut_iter() { let (dy, dx) = *cur_piece.iter().min_by(|e| *e).unwrap(); for &(ref mut y, ref mut x) in cur_piece.mut_iter() { *y -= dy; *x -= dx; } } res } // A mask is a piece somewere on the board. It is represented as a // u64: for i in the first 50 bits, m[i] = 1 if the cell at (i/5, i%5) // is occuped. m[50 + id] = 1 if the identifier of the piece is id. // Takes a piece with minimum coordinate (0, 0) (as generated by // transform). Returns the corresponding mask if p translated by (dy, // dx) is on the board. fn mask(dy: int, dx: int, id: uint, p: &Vec<(int, int)>) -> Option { let mut m = 1 << (50 + id); for &(y, x) in p.iter() { let x = x + dx + (y + (dy % 2)) / 2; if x < 0 || x > 4 {return None;} let y = y + dy; if y < 0 || y > 9 {return None;} m |= 1 << (y * 5 + x); } Some(m) } // Makes every possible masks. masks[i][id] correspond to every // possible masks for piece with identifier id with minimum coordinate // (i/5, i%5). fn make_masks() -> Vec > > { let pieces = vec!( vec!((0,0),(0,1),(0,2),(0,3),(1,3)), vec!((0,0),(0,2),(0,3),(1,0),(1,1)), vec!((0,0),(0,1),(0,2),(1,2),(2,1)), vec!((0,0),(0,1),(0,2),(1,1),(2,1)), vec!((0,0),(0,2),(1,0),(1,1),(2,1)), vec!((0,0),(0,1),(0,2),(1,1),(1,2)), vec!((0,0),(0,1),(1,1),(1,2),(2,1)), vec!((0,0),(0,1),(0,2),(1,0),(1,2)), vec!((0,0),(0,1),(0,2),(1,2),(1,3)), vec!((0,0),(0,1),(0,2),(0,3),(1,2))); // To break the central symetry of the problem, every // transformation must be taken except for one piece (piece 3 // here). let transforms: Vec>> = pieces.move_iter().enumerate() .map(|(id, p)| transform(p, id != 3)) .collect(); range(0, 50).map(|yx| { transforms.iter().enumerate().map(|(id, t)| { t.iter().filter_map(|p| mask(yx / 5, yx % 5, id, p)).collect() }).collect() }).collect() } // Check if all coordinates can be covered by an unused piece and that // all unused piece can be placed on the board. fn is_board_unfeasible(board: u64, masks: &Vec>>) -> bool { let mut coverable = board; for (i, masks_at) in masks.iter().enumerate() { if board & 1 << i != 0 { continue; } for (cur_id, pos_masks) in masks_at.iter().enumerate() { if board & 1 << (50 + cur_id) != 0 { continue; } for &cur_m in pos_masks.iter() { if cur_m & board != 0 { continue; } coverable |= cur_m; // if every coordinates can be covered and every // piece can be used. if coverable == (1 << 60) - 1 { return false; } } } if coverable & 1 << i == 0 { return true; } } true } // Filter the masks that we can prove to result to unfeasible board. fn filter_masks(masks: &mut Vec>>) { for i in range(0, masks.len()) { for j in range(0, masks.get(i).len()) { *masks.get_mut(i).get_mut(j) = masks.get(i).get(j).iter().map(|&m| m) .filter(|&m| !is_board_unfeasible(m, masks)) .collect(); } } } // Gets the identifier of a mask. fn get_id(m: u64) -> u8 { for id in range(0u8, 10) { if m & (1 << (id + 50)) != 0 {return id;} } fail!("{:016x} does not have a valid identifier", m); } // Converts a list of mask to a StrBuf. fn to_vec(raw_sol: &List) -> Vec { let mut sol = Vec::from_elem(50, '.' as u8); for &m in raw_sol.iter() { let id = '0' as u8 + get_id(m); for i in range(0u, 50) { if m & 1 << i != 0 { *sol.get_mut(i) = id; } } } sol } // Prints a solution in StrBuf form. fn print_sol(sol: &Vec) { for (i, c) in sol.iter().enumerate() { if (i) % 5 == 0 { println!(""); } if (i + 5) % 10 == 0 { print!(" "); } print!("{} ", *c as char); } println!(""); } // The data managed during the search struct Data { // Number of solution found. nb: int, // Lexicographically minimal solution found. min: Vec, // Lexicographically maximal solution found. max: Vec } impl Data { fn new() -> Data { Data {nb: 0, min: vec!(), max: vec!()} } fn reduce_from(&mut self, other: Data) { self.nb += other.nb; let Data { min: min, max: max, ..} = other; if min < self.min { self.min = min; } if max > self.max { self.max = max; } } } // Records a new found solution. Returns false if the search must be // stopped. fn handle_sol(raw_sol: &List, data: &mut Data) { // because we break the symetry, 2 solutions correspond to a call // to this method: the normal solution, and the same solution in // reverse order, i.e. the board rotated by half a turn. data.nb += 2; let sol1 = to_vec(raw_sol); let sol2: Vec = sol1.iter().rev().map(|x| *x).collect(); if data.nb == 2 { data.min = sol1.clone(); data.max = sol1.clone(); } if sol1 < data.min {data.min = sol1;} else if sol1 > data.max {data.max = sol1;} if sol2 < data.min {data.min = sol2;} else if sol2 > data.max {data.max = sol2;} } fn search( masks: &Vec>>, board: u64, mut i: uint, cur: List, data: &mut Data) { // Search for the lesser empty coordinate. while board & (1 << i) != 0 && i < 50 {i += 1;} // the board is full: a solution is found. if i >= 50 {return handle_sol(&cur, data);} let masks_at = masks.get(i); // for every unused piece for id in range(0u, 10).filter(|id| board & (1 << (id + 50)) == 0) { // for each mask that fits on the board for &m in masks_at.get(id).iter().filter(|&m| board & *m == 0) { // This check is too costy. //if is_board_unfeasible(board | m, masks) {continue;} search(masks, board | m, i + 1, Cons(m, &cur), data); } } } fn par_search(masks: Vec>>) -> Data { let masks = Arc::new(masks); let (tx, rx) = channel(); // launching the search in parallel on every masks at minimum // coordinate (0,0) for &m in masks.get(0).iter().flat_map(|masks_pos| masks_pos.iter()) { let masks = masks.clone(); let tx = tx.clone(); spawn(proc() { let mut data = Data::new(); search(&*masks, m, 1, Cons(m, &Nil), &mut data); tx.send(data); }); } // collecting the results drop(tx); let mut data = rx.recv(); for d in rx.iter() { data.reduce_from(d); } data } fn main () { let mut masks = make_masks(); filter_masks(&mut masks); let data = par_search(masks); println!("{} solutions found", data.nb); print_sol(&data.min); print_sol(&data.max); println!(""); }