// Copyright 2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. #![unstable(feature = "udp", reason = "remaining functions have not been \ scrutinized enough to be stabilized")] use prelude::v1::*; use io::{self, Error, ErrorKind}; use net::{ToSocketAddrs, SocketAddr, IpAddr}; use sys_common::net2 as net_imp; use sys_common::{AsInner, FromInner}; /// A User Datagram Protocol socket. /// /// This is an implementation of a bound UDP socket. This supports both IPv4 and /// IPv6 addresses, and there is no corresponding notion of a server because UDP /// is a datagram protocol. /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// # fn foo() -> std::io::Result<()> { /// let mut socket = try!(UdpSocket::bind("127.0.0.1:34254")); /// /// let mut buf = [0; 10]; /// let (amt, src) = try!(socket.recv_from(&mut buf)); /// /// // Send a reply to the socket we received data from /// let buf = &mut buf[..amt]; /// buf.reverse(); /// try!(socket.send_to(buf, &src)); /// /// drop(socket); // close the socket /// # Ok(()) /// # } /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub struct UdpSocket(net_imp::UdpSocket); impl UdpSocket { /// Creates a UDP socket from the given address. /// /// Address type can be any implementor of `ToSocketAddr` trait. See its /// documentation for concrete examples. #[stable(feature = "rust1", since = "1.0.0")] pub fn bind(addr: A) -> io::Result { super::each_addr(addr, net_imp::UdpSocket::bind).map(UdpSocket) } /// Receives data from the socket. On success, returns the number of bytes /// read and the address from whence the data came. #[stable(feature = "rust1", since = "1.0.0")] pub fn recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> { self.0.recv_from(buf) } /// Sends data on the socket to the given address. Returns nothing on /// success. /// /// Address type can be any implementor of `ToSocketAddrs` trait. See its /// documentation for concrete examples. #[stable(feature = "rust1", since = "1.0.0")] pub fn send_to(&self, buf: &[u8], addr: A) -> io::Result { match try!(addr.to_socket_addrs()).next() { Some(addr) => self.0.send_to(buf, &addr), None => Err(Error::new(ErrorKind::InvalidInput, "no addresses to send data to")), } } /// Returns the socket address that this socket was created from. #[stable(feature = "rust1", since = "1.0.0")] pub fn local_addr(&self) -> io::Result { self.0.socket_addr() } /// Create a new independently owned handle to the underlying socket. /// /// The returned `UdpSocket` is a reference to the same socket that this /// object references. Both handles will read and write the same port, and /// options set on one socket will be propagated to the other. #[stable(feature = "rust1", since = "1.0.0")] pub fn try_clone(&self) -> io::Result { self.0.duplicate().map(UdpSocket) } /// Sets the broadcast flag on or off pub fn set_broadcast(&self, on: bool) -> io::Result<()> { self.0.set_broadcast(on) } /// Set the multicast loop flag to the specified value /// /// This lets multicast packets loop back to local sockets (if enabled) pub fn set_multicast_loop(&self, on: bool) -> io::Result<()> { self.0.set_multicast_loop(on) } /// Joins a multicast IP address (becomes a member of it) pub fn join_multicast(&self, multi: &IpAddr) -> io::Result<()> { self.0.join_multicast(multi) } /// Leaves a multicast IP address (drops membership from it) pub fn leave_multicast(&self, multi: &IpAddr) -> io::Result<()> { self.0.leave_multicast(multi) } /// Sets the multicast TTL pub fn set_multicast_time_to_live(&self, ttl: i32) -> io::Result<()> { self.0.multicast_time_to_live(ttl) } /// Sets this socket's TTL pub fn set_time_to_live(&self, ttl: i32) -> io::Result<()> { self.0.time_to_live(ttl) } } impl AsInner for UdpSocket { fn as_inner(&self) -> &net_imp::UdpSocket { &self.0 } } impl FromInner for UdpSocket { fn from_inner(inner: net_imp::UdpSocket) -> UdpSocket { UdpSocket(inner) } } #[cfg(test)] mod tests { use prelude::v1::*; use io::ErrorKind; use net::*; use net::test::{next_test_ip4, next_test_ip6}; use sync::mpsc::channel; use thread; fn each_ip(f: &mut FnMut(SocketAddr, SocketAddr)) { f(next_test_ip4(), next_test_ip4()); f(next_test_ip6(), next_test_ip6()); } macro_rules! t { ($e:expr) => { match $e { Ok(t) => t, Err(e) => panic!("received error for `{}`: {}", stringify!($e), e), } } } // FIXME #11530 this fails on android because tests are run as root #[cfg_attr(any(windows, target_os = "android"), ignore)] #[test] fn bind_error() { let addr = SocketAddrV4::new(Ipv4Addr::new(0, 0, 0, 0), 1); match UdpSocket::bind(&addr) { Ok(..) => panic!(), Err(e) => assert_eq!(e.kind(), ErrorKind::PermissionDenied), } } #[test] fn socket_smoke_test_ip4() { each_ip(&mut |server_ip, client_ip| { let (tx1, rx1) = channel(); let (tx2, rx2) = channel(); let _t = thread::spawn(move|| { let client = t!(UdpSocket::bind(&client_ip)); rx1.recv().unwrap(); t!(client.send_to(&[99], &server_ip)); tx2.send(()).unwrap(); }); let server = t!(UdpSocket::bind(&server_ip)); tx1.send(()).unwrap(); let mut buf = [0]; let (nread, src) = t!(server.recv_from(&mut buf)); assert_eq!(nread, 1); assert_eq!(buf[0], 99); assert_eq!(src, client_ip); rx2.recv().unwrap(); }) } #[test] fn socket_name_ip4() { each_ip(&mut |addr, _| { let server = t!(UdpSocket::bind(&addr)); assert_eq!(addr, t!(server.local_addr())); }) } #[test] fn udp_clone_smoke() { each_ip(&mut |addr1, addr2| { let sock1 = t!(UdpSocket::bind(&addr1)); let sock2 = t!(UdpSocket::bind(&addr2)); let _t = thread::spawn(move|| { let mut buf = [0, 0]; assert_eq!(sock2.recv_from(&mut buf).unwrap(), (1, addr1)); assert_eq!(buf[0], 1); t!(sock2.send_to(&[2], &addr1)); }); let sock3 = t!(sock1.try_clone()); let (tx1, rx1) = channel(); let (tx2, rx2) = channel(); let _t = thread::spawn(move|| { rx1.recv().unwrap(); t!(sock3.send_to(&[1], &addr2)); tx2.send(()).unwrap(); }); tx1.send(()).unwrap(); let mut buf = [0, 0]; assert_eq!(sock1.recv_from(&mut buf).unwrap(), (1, addr2)); rx2.recv().unwrap(); }) } #[test] fn udp_clone_two_read() { each_ip(&mut |addr1, addr2| { let sock1 = t!(UdpSocket::bind(&addr1)); let sock2 = t!(UdpSocket::bind(&addr2)); let (tx1, rx) = channel(); let tx2 = tx1.clone(); let _t = thread::spawn(move|| { t!(sock2.send_to(&[1], &addr1)); rx.recv().unwrap(); t!(sock2.send_to(&[2], &addr1)); rx.recv().unwrap(); }); let sock3 = t!(sock1.try_clone()); let (done, rx) = channel(); let _t = thread::spawn(move|| { let mut buf = [0, 0]; t!(sock3.recv_from(&mut buf)); tx2.send(()).unwrap(); done.send(()).unwrap(); }); let mut buf = [0, 0]; t!(sock1.recv_from(&mut buf)); tx1.send(()).unwrap(); rx.recv().unwrap(); }) } #[test] fn udp_clone_two_write() { each_ip(&mut |addr1, addr2| { let sock1 = t!(UdpSocket::bind(&addr1)); let sock2 = t!(UdpSocket::bind(&addr2)); let (tx, rx) = channel(); let (serv_tx, serv_rx) = channel(); let _t = thread::spawn(move|| { let mut buf = [0, 1]; rx.recv().unwrap(); t!(sock2.recv_from(&mut buf)); serv_tx.send(()).unwrap(); }); let sock3 = t!(sock1.try_clone()); let (done, rx) = channel(); let tx2 = tx.clone(); let _t = thread::spawn(move|| { match sock3.send_to(&[1], &addr2) { Ok(..) => { let _ = tx2.send(()); } Err(..) => {} } done.send(()).unwrap(); }); match sock1.send_to(&[2], &addr2) { Ok(..) => { let _ = tx.send(()); } Err(..) => {} } drop(tx); rx.recv().unwrap(); serv_rx.recv().unwrap(); }) } }