// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use back::link::exported_name; use session; use llvm::ValueRef; use llvm; use middle::infer; use middle::subst; use middle::subst::{Subst, Substs}; use middle::traits; use middle::ty_fold::{TypeFolder, TypeFoldable}; use trans::base::{set_llvm_fn_attrs, set_inline_hint}; use trans::base::{trans_enum_variant, push_ctxt, get_item_val}; use trans::base::{trans_fn, decl_internal_rust_fn}; use trans::base; use trans::common::*; use trans::foreign; use middle::ty::{self, HasProjectionTypes, Ty}; use util::ppaux::Repr; use syntax::abi; use syntax::ast; use syntax::ast_map; use syntax::ast_util::{local_def, PostExpansionMethod}; use syntax::attr; use syntax::codemap::DUMMY_SP; use std::hash::{Hasher, Hash, SipHasher}; pub fn monomorphic_fn<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, fn_id: ast::DefId, psubsts: &subst::Substs<'tcx>, ref_id: Option) -> (ValueRef, Ty<'tcx>, bool) { debug!("monomorphic_fn(\ fn_id={}, \ real_substs={}, \ ref_id={:?})", fn_id.repr(ccx.tcx()), psubsts.repr(ccx.tcx()), ref_id); assert!(psubsts.types.all(|t| { !ty::type_needs_infer(*t) && !ty::type_has_params(*t) })); let _icx = push_ctxt("monomorphic_fn"); let hash_id = MonoId { def: fn_id, params: psubsts.types.clone() }; let item_ty = ty::lookup_item_type(ccx.tcx(), fn_id).ty; let mono_ty = item_ty.subst(ccx.tcx(), psubsts); match ccx.monomorphized().borrow().get(&hash_id) { Some(&val) => { debug!("leaving monomorphic fn {}", ty::item_path_str(ccx.tcx(), fn_id)); return (val, mono_ty, false); } None => () } debug!("monomorphic_fn(\ fn_id={}, \ psubsts={}, \ hash_id={:?})", fn_id.repr(ccx.tcx()), psubsts.repr(ccx.tcx()), hash_id); let map_node = session::expect( ccx.sess(), ccx.tcx().map.find(fn_id.node), || { format!("while monomorphizing {:?}, couldn't find it in \ the item map (may have attempted to monomorphize \ an item defined in a different crate?)", fn_id) }); if let ast_map::NodeForeignItem(_) = map_node { if ccx.tcx().map.get_foreign_abi(fn_id.node) != abi::RustIntrinsic { // Foreign externs don't have to be monomorphized. return (get_item_val(ccx, fn_id.node), mono_ty, true); } } debug!("monomorphic_fn about to subst into {}", item_ty.repr(ccx.tcx())); debug!("mono_ty = {} (post-substitution)", mono_ty.repr(ccx.tcx())); let mono_ty = normalize_associated_type(ccx.tcx(), &mono_ty); debug!("mono_ty = {} (post-normalization)", mono_ty.repr(ccx.tcx())); ccx.stats().n_monos.set(ccx.stats().n_monos.get() + 1); let depth; { let mut monomorphizing = ccx.monomorphizing().borrow_mut(); depth = match monomorphizing.get(&fn_id) { Some(&d) => d, None => 0 }; // Random cut-off -- code that needs to instantiate the same function // recursively more than thirty times can probably safely be assumed // to be causing an infinite expansion. if depth > ccx.sess().recursion_limit.get() { ccx.sess().span_fatal(ccx.tcx().map.span(fn_id.node), "reached the recursion limit during monomorphization"); } monomorphizing.insert(fn_id, depth + 1); } let hash; let s = { let mut state = SipHasher::new(); hash_id.hash(&mut state); mono_ty.hash(&mut state); hash = format!("h{}", state.finish()); ccx.tcx().map.with_path(fn_id.node, |path| { exported_name(path, &hash[]) }) }; debug!("monomorphize_fn mangled to {}", s); // This shouldn't need to option dance. let mut hash_id = Some(hash_id); let mut mk_lldecl = |&mut : abi: abi::Abi| { let lldecl = if abi != abi::Rust { foreign::decl_rust_fn_with_foreign_abi(ccx, mono_ty, &s[]) } else { decl_internal_rust_fn(ccx, mono_ty, &s[]) }; ccx.monomorphized().borrow_mut().insert(hash_id.take().unwrap(), lldecl); lldecl }; let setup_lldecl = |&: lldecl, attrs: &[ast::Attribute]| { base::update_linkage(ccx, lldecl, None, base::OriginalTranslation); set_llvm_fn_attrs(ccx, attrs, lldecl); let is_first = !ccx.available_monomorphizations().borrow().contains(&s); if is_first { ccx.available_monomorphizations().borrow_mut().insert(s.clone()); } let trans_everywhere = attr::requests_inline(attrs); if trans_everywhere && !is_first { llvm::SetLinkage(lldecl, llvm::AvailableExternallyLinkage); } // If `true`, then `lldecl` should be given a function body. // Otherwise, it should be left as a declaration of an external // function, with no definition in the current compilation unit. trans_everywhere || is_first }; let lldecl = match map_node { ast_map::NodeItem(i) => { match *i { ast::Item { node: ast::ItemFn(ref decl, _, abi, _, ref body), .. } => { let d = mk_lldecl(abi); let needs_body = setup_lldecl(d, &i.attrs[]); if needs_body { if abi != abi::Rust { foreign::trans_rust_fn_with_foreign_abi( ccx, &**decl, &**body, &[], d, psubsts, fn_id.node, Some(&hash[])); } else { trans_fn(ccx, &**decl, &**body, d, psubsts, fn_id.node, &[]); } } d } _ => { ccx.sess().bug("Can't monomorphize this kind of item") } } } ast_map::NodeVariant(v) => { let parent = ccx.tcx().map.get_parent(fn_id.node); let tvs = ty::enum_variants(ccx.tcx(), local_def(parent)); let this_tv = tvs.iter().find(|tv| { tv.id.node == fn_id.node}).unwrap(); let d = mk_lldecl(abi::Rust); set_inline_hint(d); match v.node.kind { ast::TupleVariantKind(ref args) => { trans_enum_variant(ccx, parent, &*v, &args[], this_tv.disr_val, psubsts, d); } ast::StructVariantKind(_) => ccx.sess().bug("can't monomorphize struct variants"), } d } ast_map::NodeImplItem(ii) => { match *ii { ast::MethodImplItem(ref mth) => { let d = mk_lldecl(abi::Rust); let needs_body = setup_lldecl(d, &mth.attrs[]); if needs_body { trans_fn(ccx, mth.pe_fn_decl(), mth.pe_body(), d, psubsts, mth.id, &[]); } d } ast::TypeImplItem(_) => { ccx.sess().bug("can't monomorphize an associated type") } } } ast_map::NodeTraitItem(method) => { match *method { ast::ProvidedMethod(ref mth) => { let d = mk_lldecl(abi::Rust); let needs_body = setup_lldecl(d, &mth.attrs[]); if needs_body { trans_fn(ccx, mth.pe_fn_decl(), mth.pe_body(), d, psubsts, mth.id, &[]); } d } _ => { ccx.sess().bug(&format!("can't monomorphize a {:?}", map_node)[]) } } } ast_map::NodeStructCtor(struct_def) => { let d = mk_lldecl(abi::Rust); set_inline_hint(d); base::trans_tuple_struct(ccx, &struct_def.fields[], struct_def.ctor_id.expect("ast-mapped tuple struct \ didn't have a ctor id"), psubsts, d); d } // Ugh -- but this ensures any new variants won't be forgotten ast_map::NodeForeignItem(..) | ast_map::NodeLifetime(..) | ast_map::NodeExpr(..) | ast_map::NodeStmt(..) | ast_map::NodeArg(..) | ast_map::NodeBlock(..) | ast_map::NodePat(..) | ast_map::NodeLocal(..) => { ccx.sess().bug(&format!("can't monomorphize a {:?}", map_node)[]) } }; ccx.monomorphizing().borrow_mut().insert(fn_id, depth); debug!("leaving monomorphic fn {}", ty::item_path_str(ccx.tcx(), fn_id)); (lldecl, mono_ty, true) } #[derive(PartialEq, Eq, Hash, Debug)] pub struct MonoId<'tcx> { pub def: ast::DefId, pub params: subst::VecPerParamSpace> } /// Monomorphizes a type from the AST by first applying the in-scope /// substitutions and then normalizing any associated types. pub fn apply_param_substs<'tcx,T>(tcx: &ty::ctxt<'tcx>, param_substs: &Substs<'tcx>, value: &T) -> T where T : TypeFoldable<'tcx> + Repr<'tcx> + HasProjectionTypes + Clone { let substituted = value.subst(tcx, param_substs); normalize_associated_type(tcx, &substituted) } /// Removes associated types, if any. Since this during /// monomorphization, we know that only concrete types are involved, /// and hence we can be sure that all associated types will be /// completely normalized away. pub fn normalize_associated_type<'tcx,T>(tcx: &ty::ctxt<'tcx>, value: &T) -> T where T : TypeFoldable<'tcx> + Repr<'tcx> + HasProjectionTypes + Clone { debug!("normalize_associated_type(t={})", value.repr(tcx)); let value = erase_regions(tcx, value); if !value.has_projection_types() { return value; } // FIXME(#20304) -- cache let infcx = infer::new_infer_ctxt(tcx); let typer = NormalizingClosureTyper::new(tcx); let mut selcx = traits::SelectionContext::new(&infcx, &typer); let cause = traits::ObligationCause::dummy(); let traits::Normalized { value: result, obligations } = traits::normalize(&mut selcx, cause, &value); debug!("normalize_associated_type: result={} obligations={}", result.repr(tcx), obligations.repr(tcx)); let mut fulfill_cx = traits::FulfillmentContext::new(); for obligation in obligations { fulfill_cx.register_predicate_obligation(&infcx, obligation); } let result = drain_fulfillment_cx(DUMMY_SP, &infcx, &mut fulfill_cx, &result); result }