// Copyright 2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Write the output of rustc's analysis to an implementor of Dump. //! //! Dumping the analysis is implemented by walking the AST and getting a bunch of //! info out from all over the place. We use Def IDs to identify objects. The //! tricky part is getting syntactic (span, source text) and semantic (reference //! Def IDs) information for parts of expressions which the compiler has discarded. //! E.g., in a path `foo::bar::baz`, the compiler only keeps a span for the whole //! path and a reference to `baz`, but we want spans and references for all three //! idents. //! //! SpanUtils is used to manipulate spans. In particular, to extract sub-spans //! from spans (e.g., the span for `bar` from the above example path). //! DumpVisitor walks the AST and processes it, and an implementor of Dump //! is used for recording the output in a format-agnostic way (see CsvDumper //! for an example). use rustc::hir::def::Def as HirDef; use rustc::hir::def_id::DefId; use rustc::hir::map::Node; use rustc::ty::{self, TyCtxt}; use rustc_data_structures::fx::FxHashSet; use std::path::Path; use syntax::ast::{self, NodeId, PatKind, Attribute, CRATE_NODE_ID}; use syntax::parse::token; use syntax::symbol::keywords; use syntax::visit::{self, Visitor}; use syntax::print::pprust::{path_to_string, ty_to_string, bounds_to_string, generics_to_string}; use syntax::ptr::P; use syntax::codemap::Spanned; use syntax_pos::*; use {escape, generated_code, SaveContext, PathCollector, lower_attributes}; use json_dumper::{JsonDumper, DumpOutput}; use span_utils::SpanUtils; use sig; use rls_data::{CratePreludeData, Import, ImportKind, SpanData, Ref, RefKind, Def, DefKind, Relation, RelationKind}; macro_rules! down_cast_data { ($id:ident, $kind:ident, $sp:expr) => { let $id = if let super::Data::$kind(data) = $id { data } else { span_bug!($sp, "unexpected data kind: {:?}", $id); }; }; } pub struct DumpVisitor<'l, 'tcx: 'l, 'll, O: DumpOutput + 'll> { save_ctxt: SaveContext<'l, 'tcx>, tcx: TyCtxt<'l, 'tcx, 'tcx>, dumper: &'ll mut JsonDumper, span: SpanUtils<'l>, cur_scope: NodeId, // Set of macro definition (callee) spans, and the set // of macro use (callsite) spans. We store these to ensure // we only write one macro def per unique macro definition, and // one macro use per unique callsite span. // mac_defs: HashSet, macro_calls: FxHashSet, } impl<'l, 'tcx: 'l, 'll, O: DumpOutput + 'll> DumpVisitor<'l, 'tcx, 'll, O> { pub fn new(save_ctxt: SaveContext<'l, 'tcx>, dumper: &'ll mut JsonDumper) -> DumpVisitor<'l, 'tcx, 'll, O> { let span_utils = SpanUtils::new(&save_ctxt.tcx.sess); DumpVisitor { tcx: save_ctxt.tcx, save_ctxt, dumper, span: span_utils.clone(), cur_scope: CRATE_NODE_ID, // mac_defs: HashSet::new(), macro_calls: FxHashSet(), } } fn nest_scope(&mut self, scope_id: NodeId, f: F) where F: FnOnce(&mut DumpVisitor<'l, 'tcx, 'll, O>) { let parent_scope = self.cur_scope; self.cur_scope = scope_id; f(self); self.cur_scope = parent_scope; } fn nest_tables(&mut self, item_id: NodeId, f: F) where F: FnOnce(&mut DumpVisitor<'l, 'tcx, 'll, O>) { let item_def_id = self.tcx.hir.local_def_id(item_id); if self.tcx.has_typeck_tables(item_def_id) { let tables = self.tcx.typeck_tables_of(item_def_id); let old_tables = self.save_ctxt.tables; self.save_ctxt.tables = tables; f(self); self.save_ctxt.tables = old_tables; } else { f(self); } } fn span_from_span(&self, span: Span) -> SpanData { self.save_ctxt.span_from_span(span) } pub fn dump_crate_info(&mut self, name: &str, krate: &ast::Crate) { let source_file = self.tcx.sess.local_crate_source_file.as_ref(); let crate_root = source_file.map(|source_file| { let source_file = Path::new(source_file); match source_file.file_name() { Some(_) => source_file.parent().unwrap().display().to_string(), None => source_file.display().to_string(), } }); let data = CratePreludeData { crate_name: name.into(), crate_root: crate_root.unwrap_or("".to_owned()), external_crates: self.save_ctxt.get_external_crates(), span: self.span_from_span(krate.span), }; self.dumper.crate_prelude(data); } // Return all non-empty prefixes of a path. // For each prefix, we return the span for the last segment in the prefix and // a str representation of the entire prefix. fn process_path_prefixes(&self, path: &ast::Path) -> Vec<(Span, String)> { let segments = &path.segments[if path.is_global() { 1 } else { 0 }..]; let mut result = Vec::with_capacity(segments.len()); let mut segs = vec![]; for (i, seg) in segments.iter().enumerate() { segs.push(seg.clone()); let sub_path = ast::Path { span: seg.span, // span for the last segment segments: segs, }; let qualname = if i == 0 && path.is_global() { format!("::{}", path_to_string(&sub_path)) } else { path_to_string(&sub_path) }; result.push((seg.span, qualname)); segs = sub_path.segments; } result } fn write_sub_paths(&mut self, path: &ast::Path) { let sub_paths = self.process_path_prefixes(path); for (span, _) in sub_paths { let span = self.span_from_span(span); self.dumper.dump_ref(Ref { kind: RefKind::Mod, span, ref_id: ::null_id(), }); } } // As write_sub_paths, but does not process the last ident in the path (assuming it // will be processed elsewhere). See note on write_sub_paths about global. fn write_sub_paths_truncated(&mut self, path: &ast::Path) { let sub_paths = self.process_path_prefixes(path); let len = sub_paths.len(); if len <= 1 { return; } for (span, _) in sub_paths.into_iter().take(len - 1) { let span = self.span_from_span(span); self.dumper.dump_ref(Ref { kind: RefKind::Mod, span, ref_id: ::null_id(), }); } } // As write_sub_paths, but expects a path of the form module_path::trait::method // Where trait could actually be a struct too. fn write_sub_path_trait_truncated(&mut self, path: &ast::Path) { let sub_paths = self.process_path_prefixes(path); let len = sub_paths.len(); if len <= 1 { return; } let sub_paths = &sub_paths[.. (len-1)]; // write the trait part of the sub-path let (ref span, _) = sub_paths[len-2]; let span = self.span_from_span(*span); self.dumper.dump_ref(Ref { kind: RefKind::Type, ref_id: ::null_id(), span, }); // write the other sub-paths if len <= 2 { return; } let sub_paths = &sub_paths[..len-2]; for &(ref span, _) in sub_paths { let span = self.span_from_span(*span); self.dumper.dump_ref(Ref { kind: RefKind::Mod, span, ref_id: ::null_id(), }); } } fn lookup_def_id(&self, ref_id: NodeId) -> Option { match self.save_ctxt.get_path_def(ref_id) { HirDef::PrimTy(..) | HirDef::SelfTy(..) | HirDef::Err => None, def => Some(def.def_id()), } } fn process_def_kind(&mut self, ref_id: NodeId, span: Span, sub_span: Option, def_id: DefId) { if self.span.filter_generated(sub_span, span) { return; } let def = self.save_ctxt.get_path_def(ref_id); match def { HirDef::Mod(_) => { let span = self.span_from_span(sub_span.expect("No span found for mod ref")); self.dumper.dump_ref(Ref { kind: RefKind::Mod, span, ref_id: ::id_from_def_id(def_id), }); } HirDef::Struct(..) | HirDef::Variant(..) | HirDef::Union(..) | HirDef::Enum(..) | HirDef::TyAlias(..) | HirDef::Trait(_) => { let span = self.span_from_span(sub_span.expect("No span found for type ref")); self.dumper.dump_ref(Ref { kind: RefKind::Type, span, ref_id: ::id_from_def_id(def_id), }); } HirDef::Static(..) | HirDef::Const(..) | HirDef::StructCtor(..) | HirDef::VariantCtor(..) => { let span = self.span_from_span(sub_span.expect("No span found for var ref")); self.dumper.dump_ref(Ref { kind: RefKind::Variable, span, ref_id: ::id_from_def_id(def_id), }); } HirDef::Fn(..) => { let span = self.span_from_span(sub_span.expect("No span found for fn ref")); self.dumper.dump_ref(Ref { kind: RefKind::Function, span, ref_id: ::id_from_def_id(def_id), }); } // With macros 2.0, we can legitimately get a ref to a macro, but // we don't handle it properly for now (FIXME). HirDef::Macro(..) => {} HirDef::Local(..) | HirDef::Upvar(..) | HirDef::SelfTy(..) | HirDef::Label(_) | HirDef::TyParam(..) | HirDef::Method(..) | HirDef::AssociatedTy(..) | HirDef::AssociatedConst(..) | HirDef::PrimTy(_) | HirDef::GlobalAsm(_) | HirDef::Err => { span_bug!(span, "process_def_kind for unexpected item: {:?}", def); } } } fn process_formals(&mut self, formals: &'l [ast::Arg], qualname: &str) { for arg in formals { self.visit_pat(&arg.pat); let mut collector = PathCollector::new(); collector.visit_pat(&arg.pat); let span_utils = self.span.clone(); for &(id, ref p, ..) in &collector.collected_paths { let hir_id = self.tcx.hir.node_to_hir_id(id); let typ = match self.save_ctxt.tables.node_id_to_type_opt(hir_id) { Some(s) => s.to_string(), None => continue, }; // get the span only for the name of the variable (I hope the path is only ever a // variable name, but who knows?) let sub_span = span_utils.span_for_last_ident(p.span); if !self.span.filter_generated(sub_span, p.span) { let id = ::id_from_node_id(id, &self.save_ctxt); let span = self.span_from_span(sub_span.expect("No span found for variable")); self.dumper.dump_def(false, Def { kind: DefKind::Local, id, span, name: path_to_string(p), qualname: format!("{}::{}", qualname, path_to_string(p)), value: typ, parent: None, children: vec![], decl_id: None, docs: String::new(), sig: None, attributes:vec![], }); } } } } fn process_method(&mut self, sig: &'l ast::MethodSig, body: Option<&'l ast::Block>, id: ast::NodeId, name: ast::Ident, vis: ast::Visibility, span: Span) { debug!("process_method: {}:{}", id, name); if let Some(mut method_data) = self.save_ctxt.get_method_data(id, name.name, span) { let sig_str = ::make_signature(&sig.decl, &sig.generics); if body.is_some() { self.nest_tables(id, |v| { v.process_formals(&sig.decl.inputs, &method_data.qualname) }); } self.process_generic_params(&sig.generics, span, &method_data.qualname, id); method_data.value = sig_str; method_data.sig = sig::method_signature(id, name, sig, &self.save_ctxt); self.dumper.dump_def(vis == ast::Visibility::Public, method_data); } // walk arg and return types for arg in &sig.decl.inputs { self.visit_ty(&arg.ty); } if let ast::FunctionRetTy::Ty(ref ret_ty) = sig.decl.output { self.visit_ty(ret_ty); } // walk the fn body if let Some(body) = body { self.nest_tables(id, |v| v.nest_scope(id, |v| v.visit_block(body))); } } fn process_trait_ref(&mut self, trait_ref: &'l ast::TraitRef) { let trait_ref_data = self.save_ctxt.get_trait_ref_data(trait_ref); if let Some(trait_ref_data) = trait_ref_data { self.dumper.dump_ref(trait_ref_data); } self.process_path(trait_ref.ref_id, &trait_ref.path); } fn process_struct_field_def(&mut self, field: &ast::StructField, parent_id: NodeId) { let field_data = self.save_ctxt.get_field_data(field, parent_id); if let Some(field_data) = field_data { self.dumper.dump_def(field.vis == ast::Visibility::Public, field_data); } } // Dump generic params bindings, then visit_generics fn process_generic_params(&mut self, generics: &'l ast::Generics, full_span: Span, prefix: &str, id: NodeId) { for param in &generics.ty_params { let param_ss = param.span; let name = escape(self.span.snippet(param_ss)); // Append $id to name to make sure each one is unique let qualname = format!("{}::{}${}", prefix, name, id); if !self.span.filter_generated(Some(param_ss), full_span) { let id = ::id_from_node_id(param.id, &self.save_ctxt); let span = self.span_from_span(param_ss); self.dumper.dump_def(false, Def { kind: DefKind::Type, id, span, name, qualname, value: String::new(), parent: None, children: vec![], decl_id: None, docs: String::new(), sig: None, attributes: vec![], }); } } self.visit_generics(generics); } fn process_fn(&mut self, item: &'l ast::Item, decl: &'l ast::FnDecl, ty_params: &'l ast::Generics, body: &'l ast::Block) { if let Some(fn_data) = self.save_ctxt.get_item_data(item) { down_cast_data!(fn_data, DefData, item.span); self.nest_tables(item.id, |v| v.process_formals(&decl.inputs, &fn_data.qualname)); self.process_generic_params(ty_params, item.span, &fn_data.qualname, item.id); self.dumper.dump_def(item.vis == ast::Visibility::Public, fn_data); } for arg in &decl.inputs { self.visit_ty(&arg.ty); } if let ast::FunctionRetTy::Ty(ref ret_ty) = decl.output { self.visit_ty(&ret_ty); } self.nest_tables(item.id, |v| v.nest_scope(item.id, |v| v.visit_block(&body))); } fn process_static_or_const_item(&mut self, item: &'l ast::Item, typ: &'l ast::Ty, expr: &'l ast::Expr) { self.nest_tables(item.id, |v| { if let Some(var_data) = v.save_ctxt.get_item_data(item) { down_cast_data!(var_data, DefData, item.span); v.dumper.dump_def(item.vis == ast::Visibility::Public, var_data); } v.visit_ty(&typ); v.visit_expr(expr); }); } fn process_assoc_const(&mut self, id: ast::NodeId, name: ast::Name, span: Span, typ: &'l ast::Ty, expr: Option<&'l ast::Expr>, parent_id: DefId, vis: ast::Visibility, attrs: &'l [Attribute]) { let qualname = format!("::{}", self.tcx.node_path_str(id)); let sub_span = self.span.sub_span_after_keyword(span, keywords::Const); if !self.span.filter_generated(sub_span, span) { let sig = sig::assoc_const_signature(id, name, typ, expr, &self.save_ctxt); let id = ::id_from_node_id(id, &self.save_ctxt); let span = self.span_from_span(sub_span.expect("No span found for variable")); self.dumper.dump_def(vis == ast::Visibility::Public, Def { kind: DefKind::Const, id, span, name: name.to_string(), qualname, value: ty_to_string(&typ), parent: Some(::id_from_def_id(parent_id)), children: vec![], decl_id: None, docs: self.save_ctxt.docs_for_attrs(attrs), sig, attributes: lower_attributes(attrs.to_owned(), &self.save_ctxt), }); } // walk type and init value self.visit_ty(typ); if let Some(expr) = expr { self.visit_expr(expr); } } // FIXME tuple structs should generate tuple-specific data. fn process_struct(&mut self, item: &'l ast::Item, def: &'l ast::VariantData, ty_params: &'l ast::Generics) { let name = item.ident.to_string(); let qualname = format!("::{}", self.tcx.node_path_str(item.id)); let sub_span = self.span.sub_span_after_keyword(item.span, keywords::Struct); let (value, fields) = if let ast::ItemKind::Struct(ast::VariantData::Struct(ref fields, _), _) = item.node { let include_priv_fields = !self.save_ctxt.config.pub_only; let fields_str = fields .iter() .enumerate() .filter_map(|(i, f)| { if include_priv_fields || f.vis == ast::Visibility::Public { f.ident.map(|i| i.to_string()).or_else(|| Some(i.to_string())) } else { None } }) .collect::>() .join(", "); let value = format!("{} {{ {} }}", name, fields_str); (value, fields.iter().map(|f| ::id_from_node_id(f.id, &self.save_ctxt)).collect()) } else { (String::new(), vec![]) }; if !self.span.filter_generated(sub_span, item.span) { let span = self.span_from_span(sub_span.expect("No span found for struct")); self.dumper.dump_def(item.vis == ast::Visibility::Public, Def { kind: DefKind::Struct, id: ::id_from_node_id(item.id, &self.save_ctxt), span, name, qualname: qualname.clone(), value, parent: None, children: fields, decl_id: None, docs: self.save_ctxt.docs_for_attrs(&item.attrs), sig: sig::item_signature(item, &self.save_ctxt), attributes: lower_attributes(item.attrs.clone(), &self.save_ctxt), }); } for field in def.fields() { self.process_struct_field_def(field, item.id); self.visit_ty(&field.ty); } self.process_generic_params(ty_params, item.span, &qualname, item.id); } fn process_enum(&mut self, item: &'l ast::Item, enum_definition: &'l ast::EnumDef, ty_params: &'l ast::Generics) { let enum_data = self.save_ctxt.get_item_data(item); let enum_data = match enum_data { None => return, Some(data) => data, }; down_cast_data!(enum_data, DefData, item.span); for variant in &enum_definition.variants { let name = variant.node.name.name.to_string(); let mut qualname = enum_data.qualname.clone(); qualname.push_str("::"); qualname.push_str(&name); match variant.node.data { ast::VariantData::Struct(ref fields, _) => { let sub_span = self.span.span_for_first_ident(variant.span); let fields_str = fields.iter() .enumerate() .map(|(i, f)| f.ident.map(|i| i.to_string()) .unwrap_or(i.to_string())) .collect::>() .join(", "); let value = format!("{}::{} {{ {} }}", enum_data.name, name, fields_str); if !self.span.filter_generated(sub_span, variant.span) { let span = self.span_from_span( sub_span.expect("No span found for struct variant")); let id = ::id_from_node_id(variant.node.data.id(), &self.save_ctxt); let parent = Some(::id_from_node_id(item.id, &self.save_ctxt)); self.dumper.dump_def(item.vis == ast::Visibility::Public, Def { kind: DefKind::Struct, id, span, name, qualname, value, parent, children: vec![], decl_id: None, docs: self.save_ctxt.docs_for_attrs(&variant.node.attrs), sig: sig::variant_signature(variant, &self.save_ctxt), attributes: lower_attributes(variant.node.attrs.clone(), &self.save_ctxt), }); } } ref v => { let sub_span = self.span.span_for_first_ident(variant.span); let mut value = format!("{}::{}", enum_data.name, name); if let &ast::VariantData::Tuple(ref fields, _) = v { value.push('('); value.push_str(&fields.iter() .map(|f| ty_to_string(&f.ty)) .collect::>() .join(", ")); value.push(')'); } if !self.span.filter_generated(sub_span, variant.span) { let span = self.span_from_span(sub_span.expect("No span found for tuple variant")); let id = ::id_from_node_id(variant.node.data.id(), &self.save_ctxt); let parent = Some(::id_from_node_id(item.id, &self.save_ctxt)); self.dumper.dump_def(item.vis == ast::Visibility::Public, Def { kind: DefKind::Tuple, id, span, name, qualname, value, parent, children: vec![], decl_id: None, docs: self.save_ctxt.docs_for_attrs(&variant.node.attrs), sig: sig::variant_signature(variant, &self.save_ctxt), attributes: lower_attributes(variant.node.attrs.clone(), &self.save_ctxt), }); } } } for field in variant.node.data.fields() { self.process_struct_field_def(field, variant.node.data.id()); self.visit_ty(&field.ty); } } self.process_generic_params(ty_params, item.span, &enum_data.qualname, item.id); self.dumper.dump_def(item.vis == ast::Visibility::Public, enum_data); } fn process_impl(&mut self, item: &'l ast::Item, type_parameters: &'l ast::Generics, trait_ref: &'l Option, typ: &'l ast::Ty, impl_items: &'l [ast::ImplItem]) { if let Some(impl_data) = self.save_ctxt.get_item_data(item) { down_cast_data!(impl_data, RelationData, item.span); self.dumper.dump_relation(impl_data); } self.visit_ty(&typ); if let &Some(ref trait_ref) = trait_ref { self.process_path(trait_ref.ref_id, &trait_ref.path); } self.process_generic_params(type_parameters, item.span, "", item.id); for impl_item in impl_items { let map = &self.tcx.hir; self.process_impl_item(impl_item, map.local_def_id(item.id)); } } fn process_trait(&mut self, item: &'l ast::Item, generics: &'l ast::Generics, trait_refs: &'l ast::TyParamBounds, methods: &'l [ast::TraitItem]) { let name = item.ident.to_string(); let qualname = format!("::{}", self.tcx.node_path_str(item.id)); let mut val = name.clone(); if !generics.lifetimes.is_empty() || !generics.ty_params.is_empty() { val.push_str(&generics_to_string(generics)); } if !trait_refs.is_empty() { val.push_str(": "); val.push_str(&bounds_to_string(trait_refs)); } let sub_span = self.span.sub_span_after_keyword(item.span, keywords::Trait); if !self.span.filter_generated(sub_span, item.span) { let id = ::id_from_node_id(item.id, &self.save_ctxt); let span = self.span_from_span(sub_span.expect("No span found for trait")); let children = methods.iter().map(|i| ::id_from_node_id(i.id, &self.save_ctxt)).collect(); self.dumper.dump_def(item.vis == ast::Visibility::Public, Def { kind: DefKind::Trait, id, span, name, qualname: qualname.clone(), value: val, parent: None, children, decl_id: None, docs: self.save_ctxt.docs_for_attrs(&item.attrs), sig: sig::item_signature(item, &self.save_ctxt), attributes: lower_attributes(item.attrs.clone(), &self.save_ctxt), }); } // super-traits for super_bound in trait_refs.iter() { let trait_ref = match *super_bound { ast::TraitTyParamBound(ref trait_ref, _) => { trait_ref } ast::RegionTyParamBound(..) => { continue; } }; let trait_ref = &trait_ref.trait_ref; if let Some(id) = self.lookup_def_id(trait_ref.ref_id) { let sub_span = self.span.sub_span_for_type_name(trait_ref.path.span); if !self.span.filter_generated(sub_span, trait_ref.path.span) { let span = self.span_from_span(sub_span.expect("No span found for trait ref")); self.dumper.dump_ref(Ref { kind: RefKind::Type, span, ref_id: ::id_from_def_id(id), }); } if !self.span.filter_generated(sub_span, trait_ref.path.span) { let sub_span = self.span_from_span(sub_span.expect("No span for inheritance")); self.dumper.dump_relation(Relation { kind: RelationKind::SuperTrait, span: sub_span, from: ::id_from_def_id(id), to: ::id_from_node_id(item.id, &self.save_ctxt), }); } } } // walk generics and methods self.process_generic_params(generics, item.span, &qualname, item.id); for method in methods { let map = &self.tcx.hir; self.process_trait_item(method, map.local_def_id(item.id)) } } // `item` is the module in question, represented as an item. fn process_mod(&mut self, item: &ast::Item) { if let Some(mod_data) = self.save_ctxt.get_item_data(item) { down_cast_data!(mod_data, DefData, item.span); self.dumper.dump_def(item.vis == ast::Visibility::Public, mod_data); } } fn process_path(&mut self, id: NodeId, path: &ast::Path) { let path_data = self.save_ctxt.get_path_data(id, path); if generated_code(path.span) && path_data.is_none() { return; } let path_data = match path_data { Some(pd) => pd, None => { return; } }; self.dumper.dump_ref(path_data); // Modules or types in the path prefix. match self.save_ctxt.get_path_def(id) { HirDef::Method(did) => { let ti = self.tcx.associated_item(did); if ti.kind == ty::AssociatedKind::Method && ti.method_has_self_argument { self.write_sub_path_trait_truncated(path); } } HirDef::Fn(..) | HirDef::Const(..) | HirDef::Static(..) | HirDef::StructCtor(..) | HirDef::VariantCtor(..) | HirDef::AssociatedConst(..) | HirDef::Local(..) | HirDef::Upvar(..) | HirDef::Struct(..) | HirDef::Union(..) | HirDef::Variant(..) | HirDef::TyAlias(..) | HirDef::AssociatedTy(..) => self.write_sub_paths_truncated(path), _ => {} } } fn process_struct_lit(&mut self, ex: &'l ast::Expr, path: &'l ast::Path, fields: &'l [ast::Field], variant: &'l ty::VariantDef, base: &'l Option>) { self.write_sub_paths_truncated(path); if let Some(struct_lit_data) = self.save_ctxt.get_expr_data(ex) { down_cast_data!(struct_lit_data, RefData, ex.span); if !generated_code(ex.span) { self.dumper.dump_ref(struct_lit_data); } for field in fields { if let Some(field_data) = self.save_ctxt .get_field_ref_data(field, variant) { self.dumper.dump_ref(field_data); } self.visit_expr(&field.expr) } } walk_list!(self, visit_expr, base); } fn process_method_call(&mut self, ex: &'l ast::Expr, args: &'l [P]) { if let Some(mcd) = self.save_ctxt.get_expr_data(ex) { down_cast_data!(mcd, RefData, ex.span); if !generated_code(ex.span) { self.dumper.dump_ref(mcd); } } // walk receiver and args walk_list!(self, visit_expr, args); } fn process_pat(&mut self, p: &'l ast::Pat) { match p.node { PatKind::Struct(ref _path, ref fields, _) => { // FIXME do something with _path? let hir_id = self.tcx.hir.node_to_hir_id(p.id); let adt = match self.save_ctxt.tables.node_id_to_type_opt(hir_id) { Some(ty) => ty.ty_adt_def().unwrap(), None => { visit::walk_pat(self, p); return; } }; let variant = adt.variant_of_def(self.save_ctxt.get_path_def(p.id)); for &Spanned { node: ref field, span } in fields { let sub_span = self.span.span_for_first_ident(span); if let Some(f) = variant.find_field_named(field.ident.name) { if !self.span.filter_generated(sub_span, span) { let span = self.span_from_span(sub_span.expect("No span fund for var ref")); self.dumper.dump_ref(Ref { kind: RefKind::Variable, span, ref_id: ::id_from_def_id(f.did), }); } } self.visit_pat(&field.pat); } } _ => visit::walk_pat(self, p), } } fn process_var_decl(&mut self, p: &'l ast::Pat, value: String) { // The local could declare multiple new vars, we must walk the // pattern and collect them all. let mut collector = PathCollector::new(); collector.visit_pat(&p); self.visit_pat(&p); for &(id, ref p, immut) in &collector.collected_paths { let mut value = match immut { ast::Mutability::Immutable => value.to_string(), _ => String::new(), }; let hir_id = self.tcx.hir.node_to_hir_id(id); let typ = match self.save_ctxt.tables.node_id_to_type_opt(hir_id) { Some(typ) => { let typ = typ.to_string(); if !value.is_empty() { value.push_str(": "); } value.push_str(&typ); typ } None => String::new(), }; // Get the span only for the name of the variable (I hope the path // is only ever a variable name, but who knows?). let sub_span = self.span.span_for_last_ident(p.span); // Rust uses the id of the pattern for var lookups, so we'll use it too. if !self.span.filter_generated(sub_span, p.span) { let qualname = format!("{}${}", path_to_string(p), id); let id = ::id_from_node_id(id, &self.save_ctxt); let span = self.span_from_span(sub_span.expect("No span found for variable")); self.dumper.dump_def(false, Def { kind: DefKind::Local, id, span, name: path_to_string(p), qualname, value: typ, parent: None, children: vec![], decl_id: None, docs: String::new(), sig: None, attributes:vec![], }); } } } /// Extract macro use and definition information from the AST node defined /// by the given NodeId, using the expansion information from the node's /// span. /// /// If the span is not macro-generated, do nothing, else use callee and /// callsite spans to record macro definition and use data, using the /// mac_uses and mac_defs sets to prevent multiples. fn process_macro_use(&mut self, span: Span) { let source_span = span.source_callsite(); if self.macro_calls.contains(&source_span) { return; } self.macro_calls.insert(source_span); let data = match self.save_ctxt.get_macro_use_data(span) { None => return, Some(data) => data, }; self.dumper.macro_use(data); // FIXME write the macro def // let mut hasher = DefaultHasher::new(); // data.callee_span.hash(&mut hasher); // let hash = hasher.finish(); // let qualname = format!("{}::{}", data.name, hash); // Don't write macro definition for imported macros // if !self.mac_defs.contains(&data.callee_span) // && !data.imported { // self.mac_defs.insert(data.callee_span); // if let Some(sub_span) = self.span.span_for_macro_def_name(data.callee_span) { // self.dumper.macro_data(MacroData { // span: sub_span, // name: data.name.clone(), // qualname: qualname.clone(), // // FIXME where do macro docs come from? // docs: String::new(), // }.lower(self.tcx)); // } // } } fn process_trait_item(&mut self, trait_item: &'l ast::TraitItem, trait_id: DefId) { self.process_macro_use(trait_item.span); match trait_item.node { ast::TraitItemKind::Const(ref ty, ref expr) => { self.process_assoc_const(trait_item.id, trait_item.ident.name, trait_item.span, &ty, expr.as_ref().map(|e| &**e), trait_id, ast::Visibility::Public, &trait_item.attrs); } ast::TraitItemKind::Method(ref sig, ref body) => { self.process_method(sig, body.as_ref().map(|x| &**x), trait_item.id, trait_item.ident, ast::Visibility::Public, trait_item.span); } ast::TraitItemKind::Type(ref bounds, ref default_ty) => { // FIXME do something with _bounds (for type refs) let name = trait_item.ident.name.to_string(); let qualname = format!("::{}", self.tcx.node_path_str(trait_item.id)); let sub_span = self.span.sub_span_after_keyword(trait_item.span, keywords::Type); if !self.span.filter_generated(sub_span, trait_item.span) { let span = self.span_from_span(sub_span.expect("No span found for assoc type")); let id = ::id_from_node_id(trait_item.id, &self.save_ctxt); self.dumper.dump_def(true, Def { kind: DefKind::Type, id, span, name, qualname, value: self.span.snippet(trait_item.span), parent: Some(::id_from_def_id(trait_id)), children: vec![], decl_id: None, docs: self.save_ctxt.docs_for_attrs(&trait_item.attrs), sig: sig::assoc_type_signature(trait_item.id, trait_item.ident, Some(bounds), default_ty.as_ref().map(|ty| &**ty), &self.save_ctxt), attributes: lower_attributes(trait_item.attrs.clone(), &self.save_ctxt), }); } if let &Some(ref default_ty) = default_ty { self.visit_ty(default_ty) } } ast::TraitItemKind::Macro(_) => {} } } fn process_impl_item(&mut self, impl_item: &'l ast::ImplItem, impl_id: DefId) { self.process_macro_use(impl_item.span); match impl_item.node { ast::ImplItemKind::Const(ref ty, ref expr) => { self.process_assoc_const(impl_item.id, impl_item.ident.name, impl_item.span, &ty, Some(expr), impl_id, impl_item.vis.clone(), &impl_item.attrs); } ast::ImplItemKind::Method(ref sig, ref body) => { self.process_method(sig, Some(body), impl_item.id, impl_item.ident, impl_item.vis.clone(), impl_item.span); } ast::ImplItemKind::Type(ref ty) => { // FIXME uses of the assoc type should ideally point to this // 'def' and the name here should be a ref to the def in the // trait. self.visit_ty(ty) } ast::ImplItemKind::Macro(_) => {} } } } impl<'l, 'tcx: 'l, 'll, O: DumpOutput + 'll> Visitor<'l> for DumpVisitor<'l, 'tcx, 'll, O> { fn visit_mod(&mut self, m: &'l ast::Mod, span: Span, attrs: &[ast::Attribute], id: NodeId) { // Since we handle explicit modules ourselves in visit_item, this should // only get called for the root module of a crate. assert_eq!(id, ast::CRATE_NODE_ID); let qualname = format!("::{}", self.tcx.node_path_str(id)); let cm = self.tcx.sess.codemap(); let filename = cm.span_to_filename(span); let data_id = ::id_from_node_id(id, &self.save_ctxt); let children = m.items.iter().map(|i| ::id_from_node_id(i.id, &self.save_ctxt)).collect(); let span = self.span_from_span(span); self.dumper.dump_def(true, Def { kind: DefKind::Mod, id: data_id, name: String::new(), qualname, span, value: filename, children, parent: None, decl_id: None, docs: self.save_ctxt.docs_for_attrs(attrs), sig: None, attributes: lower_attributes(attrs.to_owned(), &self.save_ctxt), }); self.nest_scope(id, |v| visit::walk_mod(v, m)); } fn visit_item(&mut self, item: &'l ast::Item) { use syntax::ast::ItemKind::*; self.process_macro_use(item.span); match item.node { Use(ref use_item) => { match use_item.node { ast::ViewPathSimple(ident, ref path) => { let sub_span = self.span.span_for_last_ident(path.span); let mod_id = match self.lookup_def_id(item.id) { Some(def_id) => { self.process_def_kind(item.id, path.span, sub_span, def_id); Some(def_id) } None => None, }; // 'use' always introduces an alias, if there is not an explicit // one, there is an implicit one. let sub_span = match self.span.sub_span_after_keyword(use_item.span, keywords::As) { Some(sub_span) => Some(sub_span), None => sub_span, }; if !self.span.filter_generated(sub_span, path.span) { let span = self.span_from_span(sub_span.expect("No span found for use")); self.dumper.import(item.vis == ast::Visibility::Public, Import { kind: ImportKind::Use, ref_id: mod_id.map(|id| ::id_from_def_id(id)), span, name: ident.to_string(), value: String::new(), }); } self.write_sub_paths_truncated(path); } ast::ViewPathGlob(ref path) => { // Make a comma-separated list of names of imported modules. let mut names = vec![]; let glob_map = &self.save_ctxt.analysis.glob_map; let glob_map = glob_map.as_ref().unwrap(); if glob_map.contains_key(&item.id) { for n in glob_map.get(&item.id).unwrap() { names.push(n.to_string()); } } let sub_span = self.span .sub_span_of_token(item.span, token::BinOp(token::Star)); if !self.span.filter_generated(sub_span, item.span) { let span = self.span_from_span(sub_span.expect("No span found for use glob")); self.dumper.import(item.vis == ast::Visibility::Public, Import { kind: ImportKind::GlobUse, ref_id: None, span, name: "*".to_owned(), value: names.join(", "), }); } self.write_sub_paths(path); } ast::ViewPathList(ref path, ref list) => { for plid in list { let id = plid.node.id; if let Some(def_id) = self.lookup_def_id(id) { let span = plid.span; self.process_def_kind(id, span, Some(span), def_id); } } self.write_sub_paths(path); } } } ExternCrate(_) => { let alias_span = self.span.span_for_last_ident(item.span); if !self.span.filter_generated(alias_span, item.span) { let span = self.span_from_span(alias_span.expect("No span found for extern crate")); self.dumper.import(false, Import { kind: ImportKind::ExternCrate, ref_id: None, span, name: item.ident.to_string(), value: String::new(), }); } } Fn(ref decl, .., ref ty_params, ref body) => self.process_fn(item, &decl, ty_params, &body), Static(ref typ, _, ref expr) => self.process_static_or_const_item(item, typ, expr), Const(ref typ, ref expr) => self.process_static_or_const_item(item, &typ, &expr), Struct(ref def, ref ty_params) => self.process_struct(item, def, ty_params), Enum(ref def, ref ty_params) => self.process_enum(item, def, ty_params), Impl(.., ref ty_params, ref trait_ref, ref typ, ref impl_items) => { self.process_impl(item, ty_params, trait_ref, &typ, impl_items) } Trait(_, ref generics, ref trait_refs, ref methods) => self.process_trait(item, generics, trait_refs, methods), Mod(ref m) => { self.process_mod(item); self.nest_scope(item.id, |v| visit::walk_mod(v, m)); } Ty(ref ty, ref ty_params) => { let qualname = format!("::{}", self.tcx.node_path_str(item.id)); let value = ty_to_string(&ty); let sub_span = self.span.sub_span_after_keyword(item.span, keywords::Type); if !self.span.filter_generated(sub_span, item.span) { let span = self.span_from_span(sub_span.expect("No span found for typedef")); let id = ::id_from_node_id(item.id, &self.save_ctxt); self.dumper.dump_def(item.vis == ast::Visibility::Public, Def { kind: DefKind::Type, id, span, name: item.ident.to_string(), qualname: qualname.clone(), value, parent: None, children: vec![], decl_id: None, docs: self.save_ctxt.docs_for_attrs(&item.attrs), sig: sig::item_signature(item, &self.save_ctxt), attributes: lower_attributes(item.attrs.clone(), &self.save_ctxt), }); } self.visit_ty(&ty); self.process_generic_params(ty_params, item.span, &qualname, item.id); } Mac(_) => (), _ => visit::walk_item(self, item), } } fn visit_generics(&mut self, generics: &'l ast::Generics) { for param in generics.ty_params.iter() { for bound in param.bounds.iter() { if let ast::TraitTyParamBound(ref trait_ref, _) = *bound { self.process_trait_ref(&trait_ref.trait_ref); } } if let Some(ref ty) = param.default { self.visit_ty(&ty); } } } fn visit_ty(&mut self, t: &'l ast::Ty) { self.process_macro_use(t.span); match t.node { ast::TyKind::Path(_, ref path) => { if generated_code(t.span) { return; } if let Some(id) = self.lookup_def_id(t.id) { if let Some(sub_span) = self.span.sub_span_for_type_name(t.span) { let span = self.span_from_span(sub_span); self.dumper.dump_ref(Ref { kind: RefKind::Type, span, ref_id: ::id_from_def_id(id), }); } } self.write_sub_paths_truncated(path); visit::walk_path(self, path); } ast::TyKind::Array(ref element, ref length) => { self.visit_ty(element); self.nest_tables(length.id, |v| v.visit_expr(length)); } _ => visit::walk_ty(self, t), } } fn visit_expr(&mut self, ex: &'l ast::Expr) { debug!("visit_expr {:?}", ex.node); self.process_macro_use(ex.span); match ex.node { ast::ExprKind::Struct(ref path, ref fields, ref base) => { let hir_expr = self.save_ctxt.tcx.hir.expect_expr(ex.id); let adt = match self.save_ctxt.tables.expr_ty_opt(&hir_expr) { Some(ty) if ty.ty_adt_def().is_some() => ty.ty_adt_def().unwrap(), _ => { visit::walk_expr(self, ex); return; } }; let def = self.save_ctxt.get_path_def(hir_expr.id); self.process_struct_lit(ex, path, fields, adt.variant_of_def(def), base) } ast::ExprKind::MethodCall(.., ref args) => self.process_method_call(ex, args), ast::ExprKind::Field(ref sub_ex, _) => { self.visit_expr(&sub_ex); if let Some(field_data) = self.save_ctxt.get_expr_data(ex) { down_cast_data!(field_data, RefData, ex.span); if !generated_code(ex.span) { self.dumper.dump_ref(field_data); } } } ast::ExprKind::TupField(ref sub_ex, idx) => { self.visit_expr(&sub_ex); let hir_node = match self.save_ctxt.tcx.hir.find(sub_ex.id) { Some(Node::NodeExpr(expr)) => expr, _ => { debug!("Missing or weird node for sub-expression {} in {:?}", sub_ex.id, ex); return; } }; let ty = match self.save_ctxt.tables.expr_ty_adjusted_opt(&hir_node) { Some(ty) => &ty.sty, None => { visit::walk_expr(self, ex); return; } }; match *ty { ty::TyAdt(def, _) => { let sub_span = self.span.sub_span_after_token(ex.span, token::Dot); if !self.span.filter_generated(sub_span, ex.span) { let span = self.span_from_span(sub_span.expect("No span found for var ref")); self.dumper.dump_ref(Ref { kind: RefKind::Variable, span, ref_id: ::id_from_def_id(def.struct_variant().fields[idx.node].did), }); } } ty::TyTuple(..) => {} _ => span_bug!(ex.span, "Expected struct or tuple type, found {:?}", ty), } } ast::ExprKind::Closure(_, ref decl, ref body, _fn_decl_span) => { let mut id = String::from("$"); id.push_str(&ex.id.to_string()); // walk arg and return types for arg in &decl.inputs { self.visit_ty(&arg.ty); } if let ast::FunctionRetTy::Ty(ref ret_ty) = decl.output { self.visit_ty(&ret_ty); } // walk the body self.nest_tables(ex.id, |v| { v.process_formals(&decl.inputs, &id); v.nest_scope(ex.id, |v| v.visit_expr(body)) }); } ast::ExprKind::ForLoop(ref pattern, ref subexpression, ref block, _) | ast::ExprKind::WhileLet(ref pattern, ref subexpression, ref block, _) => { let value = self.span.snippet(subexpression.span); self.process_var_decl(pattern, value); debug!("for loop, walk sub-expr: {:?}", subexpression.node); visit::walk_expr(self, subexpression); visit::walk_block(self, block); } ast::ExprKind::IfLet(ref pattern, ref subexpression, ref block, ref opt_else) => { let value = self.span.snippet(subexpression.span); self.process_var_decl(pattern, value); visit::walk_expr(self, subexpression); visit::walk_block(self, block); opt_else.as_ref().map(|el| visit::walk_expr(self, el)); } ast::ExprKind::Repeat(ref element, ref count) => { self.visit_expr(element); self.nest_tables(count.id, |v| v.visit_expr(count)); } // In particular, we take this branch for call and path expressions, // where we'll index the idents involved just by continuing to walk. _ => { visit::walk_expr(self, ex) } } } fn visit_mac(&mut self, mac: &'l ast::Mac) { // These shouldn't exist in the AST at this point, log a span bug. span_bug!(mac.span, "macro invocation should have been expanded out of AST"); } fn visit_pat(&mut self, p: &'l ast::Pat) { self.process_macro_use(p.span); self.process_pat(p); } fn visit_arm(&mut self, arm: &'l ast::Arm) { let mut collector = PathCollector::new(); for pattern in &arm.pats { // collect paths from the arm's patterns collector.visit_pat(&pattern); self.visit_pat(&pattern); } // This is to get around borrow checking, because we need mut self to call process_path. let mut paths_to_process = vec![]; // process collected paths for &(id, ref p, immut) in &collector.collected_paths { match self.save_ctxt.get_path_def(id) { HirDef::Local(id) => { let mut value = if immut == ast::Mutability::Immutable { self.span.snippet(p.span).to_string() } else { "".to_string() }; let hir_id = self.tcx.hir.node_to_hir_id(id); let typ = self.save_ctxt .tables .node_id_to_type_opt(hir_id) .map(|t| t.to_string()) .unwrap_or(String::new()); value.push_str(": "); value.push_str(&typ); assert!(p.segments.len() == 1, "qualified path for local variable def in arm"); if !self.span.filter_generated(Some(p.span), p.span) { let qualname = format!("{}${}", path_to_string(p), id); let id = ::id_from_node_id(id, &self.save_ctxt); let span = self.span_from_span(p.span); self.dumper.dump_def(false, Def { kind: DefKind::Local, id, span, name: path_to_string(p), qualname, value: typ, parent: None, children: vec![], decl_id: None, docs: String::new(), sig: None, attributes:vec![], }); } } HirDef::StructCtor(..) | HirDef::VariantCtor(..) | HirDef::Const(..) | HirDef::AssociatedConst(..) | HirDef::Struct(..) | HirDef::Variant(..) | HirDef::TyAlias(..) | HirDef::AssociatedTy(..) | HirDef::SelfTy(..) => { paths_to_process.push((id, p.clone())) } def => error!("unexpected definition kind when processing collected paths: {:?}", def), } } for &(id, ref path) in &paths_to_process { self.process_path(id, path); } walk_list!(self, visit_expr, &arm.guard); self.visit_expr(&arm.body); } fn visit_path(&mut self, p: &'l ast::Path, id: NodeId) { self.process_path(id, p); } fn visit_stmt(&mut self, s: &'l ast::Stmt) { self.process_macro_use(s.span); visit::walk_stmt(self, s) } fn visit_local(&mut self, l: &'l ast::Local) { self.process_macro_use(l.span); let value = l.init.as_ref().map(|i| self.span.snippet(i.span)).unwrap_or(String::new()); self.process_var_decl(&l.pat, value); // Just walk the initialiser and type (don't want to walk the pattern again). walk_list!(self, visit_ty, &l.ty); walk_list!(self, visit_expr, &l.init); } fn visit_foreign_item(&mut self, item: &'l ast::ForeignItem) { match item.node { ast::ForeignItemKind::Fn(ref decl, ref generics) => { if let Some(fn_data) = self.save_ctxt.get_extern_item_data(item) { down_cast_data!(fn_data, DefData, item.span); self.nest_tables(item.id, |v| v.process_formals(&decl.inputs, &fn_data.qualname)); self.process_generic_params(generics, item.span, &fn_data.qualname, item.id); self.dumper.dump_def(item.vis == ast::Visibility::Public, fn_data); } for arg in &decl.inputs { self.visit_ty(&arg.ty); } if let ast::FunctionRetTy::Ty(ref ret_ty) = decl.output { self.visit_ty(&ret_ty); } } ast::ForeignItemKind::Static(ref ty, _) => { if let Some(var_data) = self.save_ctxt.get_extern_item_data(item) { down_cast_data!(var_data, DefData, item.span); self.dumper.dump_def(item.vis == ast::Visibility::Public, var_data); } self.visit_ty(ty); } } } }