//! Coercion logic. Coercions are certain type conversions that can implicitly //! happen in certain places, e.g. weakening `&mut` to `&` or deref coercions //! like going from `&Vec` to `&[T]`. //! //! See: https://doc.rust-lang.org/nomicon/coercions.html use hir_def::{lang_item::LangItemTarget, resolver::Resolver, type_ref::Mutability, AdtId}; use rustc_hash::FxHashMap; use test_utils::tested_by; use crate::{autoderef, db::HirDatabase, Substs, Ty, TypeCtor, TypeWalk}; use super::{unify::TypeVarValue, InEnvironment, InferTy, InferenceContext}; impl<'a, D: HirDatabase> InferenceContext<'a, D> { /// Unify two types, but may coerce the first one to the second one /// using "implicit coercion rules" if needed. pub(super) fn coerce(&mut self, from_ty: &Ty, to_ty: &Ty) -> bool { let from_ty = self.resolve_ty_shallow(from_ty).into_owned(); let to_ty = self.resolve_ty_shallow(to_ty); self.coerce_inner(from_ty, &to_ty) } /// Merge two types from different branches, with possible implicit coerce. /// /// Note that it is only possible that one type are coerced to another. /// Coercing both types to another least upper bound type is not possible in rustc, /// which will simply result in "incompatible types" error. pub(super) fn coerce_merge_branch<'t>(&mut self, ty1: &Ty, ty2: &Ty) -> Ty { if self.coerce(ty1, ty2) { ty2.clone() } else if self.coerce(ty2, ty1) { ty1.clone() } else { tested_by!(coerce_merge_fail_fallback); // For incompatible types, we use the latter one as result // to be better recovery for `if` without `else`. ty2.clone() } } pub(super) fn init_coerce_unsized_map( db: &'a D, resolver: &Resolver, ) -> FxHashMap<(TypeCtor, TypeCtor), usize> { let krate = resolver.krate().unwrap(); let impls = match db.lang_item(krate, "coerce_unsized".into()) { Some(LangItemTarget::TraitId(trait_)) => db.impls_for_trait(krate, trait_), _ => return FxHashMap::default(), }; impls .iter() .filter_map(|&impl_id| { let trait_ref = db.impl_trait(impl_id)?; // `CoerseUnsized` has one generic parameter for the target type. let cur_from_ty = trait_ref.value.substs.0.get(0)?; let cur_to_ty = trait_ref.value.substs.0.get(1)?; match (&cur_from_ty, cur_to_ty) { (ty_app!(ctor1, st1), ty_app!(ctor2, st2)) => { // FIXME: We return the first non-equal bound as the type parameter to coerce to unsized type. // This works for smart-pointer-like coercion, which covers all impls from std. st1.iter().zip(st2.iter()).enumerate().find_map(|(i, (ty1, ty2))| { match (ty1, ty2) { (Ty::Bound(idx1), Ty::Bound(idx2)) if idx1 != idx2 => { Some(((*ctor1, *ctor2), i)) } _ => None, } }) } _ => None, } }) .collect() } fn coerce_inner(&mut self, mut from_ty: Ty, to_ty: &Ty) -> bool { match (&from_ty, to_ty) { // Never type will make type variable to fallback to Never Type instead of Unknown. (ty_app!(TypeCtor::Never), Ty::Infer(InferTy::TypeVar(tv))) => { let var = self.table.new_maybe_never_type_var(); self.table.var_unification_table.union_value(*tv, TypeVarValue::Known(var)); return true; } (ty_app!(TypeCtor::Never), _) => return true, // Trivial cases, this should go after `never` check to // avoid infer result type to be never _ => { if self.table.unify_inner_trivial(&from_ty, &to_ty) { return true; } } } // Pointer weakening and function to pointer match (&mut from_ty, to_ty) { // `*mut T`, `&mut T, `&T`` -> `*const T` // `&mut T` -> `&T` // `&mut T` -> `*mut T` (ty_app!(c1@TypeCtor::RawPtr(_)), ty_app!(c2@TypeCtor::RawPtr(Mutability::Shared))) | (ty_app!(c1@TypeCtor::Ref(_)), ty_app!(c2@TypeCtor::RawPtr(Mutability::Shared))) | (ty_app!(c1@TypeCtor::Ref(_)), ty_app!(c2@TypeCtor::Ref(Mutability::Shared))) | (ty_app!(c1@TypeCtor::Ref(Mutability::Mut)), ty_app!(c2@TypeCtor::RawPtr(_))) => { *c1 = *c2; } // Illegal mutablity conversion ( ty_app!(TypeCtor::RawPtr(Mutability::Shared)), ty_app!(TypeCtor::RawPtr(Mutability::Mut)), ) | ( ty_app!(TypeCtor::Ref(Mutability::Shared)), ty_app!(TypeCtor::Ref(Mutability::Mut)), ) => return false, // `{function_type}` -> `fn()` (ty_app!(TypeCtor::FnDef(_)), ty_app!(TypeCtor::FnPtr { .. })) => { match from_ty.callable_sig(self.db) { None => return false, Some(sig) => { let num_args = sig.params_and_return.len() as u16 - 1; from_ty = Ty::apply(TypeCtor::FnPtr { num_args }, Substs(sig.params_and_return)); } } } (ty_app!(TypeCtor::Closure { .. }, params), ty_app!(TypeCtor::FnPtr { .. })) => { from_ty = params[0].clone(); } _ => {} } if let Some(ret) = self.try_coerce_unsized(&from_ty, &to_ty) { return ret; } // Auto Deref if cannot coerce match (&from_ty, to_ty) { // FIXME: DerefMut (ty_app!(TypeCtor::Ref(_), st1), ty_app!(TypeCtor::Ref(_), st2)) => { self.unify_autoderef_behind_ref(&st1[0], &st2[0]) } // Otherwise, normal unify _ => self.unify(&from_ty, to_ty), } } /// Coerce a type using `from_ty: CoerceUnsized` /// /// See: https://doc.rust-lang.org/nightly/std/marker/trait.CoerceUnsized.html fn try_coerce_unsized(&mut self, from_ty: &Ty, to_ty: &Ty) -> Option { let (ctor1, st1, ctor2, st2) = match (from_ty, to_ty) { (ty_app!(ctor1, st1), ty_app!(ctor2, st2)) => (ctor1, st1, ctor2, st2), _ => return None, }; let coerce_generic_index = *self.coerce_unsized_map.get(&(*ctor1, *ctor2))?; // Check `Unsize` first match self.check_unsize_and_coerce( st1.0.get(coerce_generic_index)?, st2.0.get(coerce_generic_index)?, 0, ) { Some(true) => {} ret => return ret, } let ret = st1 .iter() .zip(st2.iter()) .enumerate() .filter(|&(idx, _)| idx != coerce_generic_index) .all(|(_, (ty1, ty2))| self.unify(ty1, ty2)); Some(ret) } /// Check if `from_ty: Unsize`, and coerce to `to_ty` if it holds. /// /// It should not be directly called. It is only used by `try_coerce_unsized`. /// /// See: https://doc.rust-lang.org/nightly/std/marker/trait.Unsize.html fn check_unsize_and_coerce(&mut self, from_ty: &Ty, to_ty: &Ty, depth: usize) -> Option { if depth > 1000 { panic!("Infinite recursion in coercion"); } match (&from_ty, &to_ty) { // `[T; N]` -> `[T]` (ty_app!(TypeCtor::Array, st1), ty_app!(TypeCtor::Slice, st2)) => { Some(self.unify(&st1[0], &st2[0])) } // `T` -> `dyn Trait` when `T: Trait` (_, Ty::Dyn(_)) => { // FIXME: Check predicates Some(true) } // `(..., T)` -> `(..., U)` when `T: Unsize` ( ty_app!(TypeCtor::Tuple { cardinality: len1 }, st1), ty_app!(TypeCtor::Tuple { cardinality: len2 }, st2), ) => { if len1 != len2 || *len1 == 0 { return None; } match self.check_unsize_and_coerce( st1.last().unwrap(), st2.last().unwrap(), depth + 1, ) { Some(true) => {} ret => return ret, } let ret = st1[..st1.len() - 1] .iter() .zip(&st2[..st2.len() - 1]) .all(|(ty1, ty2)| self.unify(ty1, ty2)); Some(ret) } // Foo<..., T, ...> is Unsize> if: // - T: Unsize // - Foo is a struct // - Only the last field of Foo has a type involving T // - T is not part of the type of any other fields // - Bar: Unsize>, if the last field of Foo has type Bar ( ty_app!(TypeCtor::Adt(AdtId::StructId(struct1)), st1), ty_app!(TypeCtor::Adt(AdtId::StructId(struct2)), st2), ) if struct1 == struct2 => { let field_tys = self.db.field_types((*struct1).into()); let struct_data = self.db.struct_data(*struct1); let mut fields = struct_data.variant_data.fields().iter(); let (last_field_id, _data) = fields.next_back()?; // Get the generic parameter involved in the last field. let unsize_generic_index = { let mut index = None; let mut multiple_param = false; field_tys[last_field_id].value.walk(&mut |ty| match ty { &Ty::Bound(idx) => { if index.is_none() { index = Some(idx); } else if Some(idx) != index { multiple_param = true; } } _ => {} }); if multiple_param { return None; } index? }; // Check other fields do not involve it. let mut multiple_used = false; fields.for_each(|(field_id, _data)| { field_tys[field_id].value.walk(&mut |ty| match ty { &Ty::Bound(idx) if idx == unsize_generic_index => multiple_used = true, _ => {} }) }); if multiple_used { return None; } let unsize_generic_index = unsize_generic_index as usize; // Check `Unsize` first match self.check_unsize_and_coerce( st1.get(unsize_generic_index)?, st2.get(unsize_generic_index)?, depth + 1, ) { Some(true) => {} ret => return ret, } // Then unify other parameters let ret = st1 .iter() .zip(st2.iter()) .enumerate() .filter(|&(idx, _)| idx != unsize_generic_index) .all(|(_, (ty1, ty2))| self.unify(ty1, ty2)); Some(ret) } _ => None, } } /// Unify `from_ty` to `to_ty` with optional auto Deref /// /// Note that the parameters are already stripped the outer reference. fn unify_autoderef_behind_ref(&mut self, from_ty: &Ty, to_ty: &Ty) -> bool { let canonicalized = self.canonicalizer().canonicalize_ty(from_ty.clone()); let to_ty = self.resolve_ty_shallow(&to_ty); // FIXME: Auto DerefMut for derefed_ty in autoderef::autoderef( self.db, self.resolver.krate(), InEnvironment { value: canonicalized.value.clone(), environment: self.trait_env.clone(), }, ) { let derefed_ty = canonicalized.decanonicalize_ty(derefed_ty.value); match (&*self.resolve_ty_shallow(&derefed_ty), &*to_ty) { // Stop when constructor matches. (ty_app!(from_ctor, st1), ty_app!(to_ctor, st2)) if from_ctor == to_ctor => { // It will not recurse to `coerce`. return self.table.unify_substs(st1, st2, 0); } _ => { if self.table.unify_inner_trivial(&derefed_ty, &to_ty) { return true; } } } } false } }