// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Numeric traits and functions for generic mathematics //! //! These are implemented for the primitive numeric types in `std::{u8, u16, //! u32, u64, uint, i8, i16, i32, i64, int, f32, f64}`. #![stable(feature = "grandfathered", since = "1.0.0")] #![allow(missing_docs)] #[cfg(test)] use fmt::Show; use ops::{Add, Sub, Mul, Div, Rem, Neg}; use marker::Copy; use clone::Clone; use cmp::{PartialOrd, PartialEq}; pub use core::num::{Int, SignedInt, UnsignedInt}; pub use core::num::{cast, FromPrimitive, NumCast, ToPrimitive}; pub use core::num::{from_int, from_i8, from_i16, from_i32, from_i64}; pub use core::num::{from_uint, from_u8, from_u16, from_u32, from_u64}; pub use core::num::{from_f32, from_f64}; pub use core::num::{FromStrRadix, from_str_radix}; pub use core::num::{FpCategory}; use option::Option; #[unstable(feature = "std_misc", reason = "may be removed or relocated")] pub mod strconv; /// Mathematical operations on primitive floating point numbers. #[stable(feature = "grandfathered", since = "1.0.0")] pub trait Float : Copy + Clone + NumCast + PartialOrd + PartialEq + Neg + Add + Sub + Mul + Div + Rem { // inlined methods from `num::Float` /// Returns the NaN value. #[unstable(feature = "std_misc", reason = "unsure about its place in the world")] fn nan() -> Self; /// Returns the infinite value. #[unstable(feature = "std_misc", reason = "unsure about its place in the world")] fn infinity() -> Self; /// Returns the negative infinite value. #[unstable(feature = "std_misc", reason = "unsure about its place in the world")] fn neg_infinity() -> Self; /// Returns the `0` value. #[unstable(feature = "std_misc", reason = "unsure about its place in the world")] fn zero() -> Self; /// Returns -0.0. #[unstable(feature = "std_misc", reason = "unsure about its place in the world")] fn neg_zero() -> Self; /// Returns the `1` value. #[unstable(feature = "std_misc", reason = "unsure about its place in the world")] fn one() -> Self; // FIXME (#5527): These should be associated constants /// Returns the number of binary digits of mantissa that this type supports. #[unstable(feature = "std_misc")] #[deprecated(since = "1.0.0", reason = "use `std::f32::MANTISSA_DIGITS` or \ `std::f64::MANTISSA_DIGITS` as appropriate")] fn mantissa_digits(unused_self: Option) -> uint; /// Returns the number of base-10 digits of precision that this type supports. #[unstable(feature = "std_misc")] #[deprecated(since = "1.0.0", reason = "use `std::f32::DIGITS` or `std::f64::DIGITS` as appropriate")] fn digits(unused_self: Option) -> uint; /// Returns the difference between 1.0 and the smallest representable number larger than 1.0. #[unstable(feature = "std_misc")] #[deprecated(since = "1.0.0", reason = "use `std::f32::EPSILON` or `std::f64::EPSILON` as appropriate")] fn epsilon() -> Self; /// Returns the minimum binary exponent that this type can represent. #[unstable(feature = "std_misc")] #[deprecated(since = "1.0.0", reason = "use `std::f32::MIN_EXP` or `std::f64::MIN_EXP` as appropriate")] fn min_exp(unused_self: Option) -> int; /// Returns the maximum binary exponent that this type can represent. #[unstable(feature = "std_misc")] #[deprecated(since = "1.0.0", reason = "use `std::f32::MAX_EXP` or `std::f64::MAX_EXP` as appropriate")] fn max_exp(unused_self: Option) -> int; /// Returns the minimum base-10 exponent that this type can represent. #[unstable(feature = "std_misc")] #[deprecated(since = "1.0.0", reason = "use `std::f32::MIN_10_EXP` or `std::f64::MIN_10_EXP` as appropriate")] fn min_10_exp(unused_self: Option) -> int; /// Returns the maximum base-10 exponent that this type can represent. #[unstable(feature = "std_misc")] #[deprecated(since = "1.0.0", reason = "use `std::f32::MAX_10_EXP` or `std::f64::MAX_10_EXP` as appropriate")] fn max_10_exp(unused_self: Option) -> int; /// Returns the smallest finite value that this type can represent. #[unstable(feature = "std_misc", reason = "unsure about its place in the world")] fn min_value() -> Self; /// Returns the smallest normalized positive number that this type can represent. #[unstable(feature = "std_misc", reason = "unsure about its place in the world")] fn min_pos_value(unused_self: Option) -> Self; /// Returns the largest finite value that this type can represent. #[unstable(feature = "std_misc", reason = "unsure about its place in the world")] fn max_value() -> Self; /// Returns true if this value is NaN and false otherwise. #[unstable(feature = "std_misc", reason = "position is undecided")] fn is_nan(self) -> bool; /// Returns true if this value is positive infinity or negative infinity and /// false otherwise. #[unstable(feature = "std_misc", reason = "position is undecided")] fn is_infinite(self) -> bool; /// Returns true if this number is neither infinite nor NaN. #[unstable(feature = "std_misc", reason = "position is undecided")] fn is_finite(self) -> bool; /// Returns true if this number is neither zero, infinite, denormal, or NaN. #[unstable(feature = "std_misc", reason = "position is undecided")] fn is_normal(self) -> bool; /// Returns the category that this number falls into. #[stable(feature = "grandfathered", since = "1.0.0")] fn classify(self) -> FpCategory; /// Returns the mantissa, exponent and sign as integers, respectively. #[unstable(feature = "std_misc", reason = "signature is undecided")] fn integer_decode(self) -> (u64, i16, i8); /// Return the largest integer less than or equal to a number. #[stable(feature = "grandfathered", since = "1.0.0")] fn floor(self) -> Self; /// Return the smallest integer greater than or equal to a number. #[stable(feature = "grandfathered", since = "1.0.0")] fn ceil(self) -> Self; /// Return the nearest integer to a number. Round half-way cases away from /// `0.0`. #[stable(feature = "grandfathered", since = "1.0.0")] fn round(self) -> Self; /// Return the integer part of a number. #[stable(feature = "grandfathered", since = "1.0.0")] fn trunc(self) -> Self; /// Return the fractional part of a number. #[stable(feature = "grandfathered", since = "1.0.0")] fn fract(self) -> Self; /// Computes the absolute value of `self`. Returns `Float::nan()` if the /// number is `Float::nan()`. #[stable(feature = "grandfathered", since = "1.0.0")] fn abs(self) -> Self; /// Returns a number that represents the sign of `self`. /// /// - `1.0` if the number is positive, `+0.0` or `Float::infinity()` /// - `-1.0` if the number is negative, `-0.0` or `Float::neg_infinity()` /// - `Float::nan()` if the number is `Float::nan()` #[stable(feature = "grandfathered", since = "1.0.0")] fn signum(self) -> Self; /// Returns `true` if `self` is positive, including `+0.0` and /// `Float::infinity()`. #[stable(feature = "grandfathered", since = "1.0.0")] fn is_positive(self) -> bool; /// Returns `true` if `self` is negative, including `-0.0` and /// `Float::neg_infinity()`. #[stable(feature = "grandfathered", since = "1.0.0")] fn is_negative(self) -> bool; /// Fused multiply-add. Computes `(self * a) + b` with only one rounding /// error. This produces a more accurate result with better performance than /// a separate multiplication operation followed by an add. #[unstable(feature = "std_misc", reason = "unsure about its place in the world")] fn mul_add(self, a: Self, b: Self) -> Self; /// Take the reciprocal (inverse) of a number, `1/x`. #[unstable(feature = "std_misc", reason = "unsure about its place in the world")] fn recip(self) -> Self; /// Raise a number to an integer power. /// /// Using this function is generally faster than using `powf` #[stable(feature = "grandfathered", since = "1.0.0")] fn powi(self, n: i32) -> Self; /// Raise a number to a floating point power. #[stable(feature = "grandfathered", since = "1.0.0")] fn powf(self, n: Self) -> Self; /// Take the square root of a number. /// /// Returns NaN if `self` is a negative number. #[stable(feature = "grandfathered", since = "1.0.0")] fn sqrt(self) -> Self; /// Take the reciprocal (inverse) square root of a number, `1/sqrt(x)`. #[unstable(feature = "std_misc", reason = "unsure about its place in the world")] fn rsqrt(self) -> Self; /// Returns `e^(self)`, (the exponential function). #[stable(feature = "grandfathered", since = "1.0.0")] fn exp(self) -> Self; /// Returns 2 raised to the power of the number, `2^(self)`. #[stable(feature = "grandfathered", since = "1.0.0")] fn exp2(self) -> Self; /// Returns the natural logarithm of the number. #[stable(feature = "grandfathered", since = "1.0.0")] fn ln(self) -> Self; /// Returns the logarithm of the number with respect to an arbitrary base. #[stable(feature = "grandfathered", since = "1.0.0")] fn log(self, base: Self) -> Self; /// Returns the base 2 logarithm of the number. #[stable(feature = "grandfathered", since = "1.0.0")] fn log2(self) -> Self; /// Returns the base 10 logarithm of the number. #[stable(feature = "grandfathered", since = "1.0.0")] fn log10(self) -> Self; /// Convert radians to degrees. #[unstable(feature = "std_misc", reason = "desirability is unclear")] fn to_degrees(self) -> Self; /// Convert degrees to radians. #[unstable(feature = "std_misc", reason = "desirability is unclear")] fn to_radians(self) -> Self; /// Constructs a floating point number created by multiplying `x` by 2 /// raised to the power of `exp`. #[unstable(feature = "std_misc", reason = "pending integer conventions")] fn ldexp(x: Self, exp: int) -> Self; /// Breaks the number into a normalized fraction and a base-2 exponent, /// satisfying: /// /// * `self = x * pow(2, exp)` /// /// * `0.5 <= abs(x) < 1.0` #[unstable(feature = "std_misc", reason = "pending integer conventions")] fn frexp(self) -> (Self, int); /// Returns the next representable floating-point value in the direction of /// `other`. #[unstable(feature = "std_misc", reason = "unsure about its place in the world")] fn next_after(self, other: Self) -> Self; /// Returns the maximum of the two numbers. #[stable(feature = "grandfathered", since = "1.0.0")] fn max(self, other: Self) -> Self; /// Returns the minimum of the two numbers. #[stable(feature = "grandfathered", since = "1.0.0")] fn min(self, other: Self) -> Self; /// The positive difference of two numbers. Returns `0.0` if the number is /// less than or equal to `other`, otherwise the difference between`self` /// and `other` is returned. #[unstable(feature = "std_misc", reason = "may be renamed")] fn abs_sub(self, other: Self) -> Self; /// Take the cubic root of a number. #[unstable(feature = "std_misc", reason = "may be renamed")] fn cbrt(self) -> Self; /// Calculate the length of the hypotenuse of a right-angle triangle given /// legs of length `x` and `y`. #[unstable(feature = "std_misc", reason = "unsure about its place in the world")] fn hypot(self, other: Self) -> Self; /// Computes the sine of a number (in radians). #[stable(feature = "grandfathered", since = "1.0.0")] fn sin(self) -> Self; /// Computes the cosine of a number (in radians). #[stable(feature = "grandfathered", since = "1.0.0")] fn cos(self) -> Self; /// Computes the tangent of a number (in radians). #[stable(feature = "grandfathered", since = "1.0.0")] fn tan(self) -> Self; /// Computes the arcsine of a number. Return value is in radians in /// the range [-pi/2, pi/2] or NaN if the number is outside the range /// [-1, 1]. #[stable(feature = "grandfathered", since = "1.0.0")] fn asin(self) -> Self; /// Computes the arccosine of a number. Return value is in radians in /// the range [0, pi] or NaN if the number is outside the range /// [-1, 1]. #[stable(feature = "grandfathered", since = "1.0.0")] fn acos(self) -> Self; /// Computes the arctangent of a number. Return value is in radians in the /// range [-pi/2, pi/2]; #[stable(feature = "grandfathered", since = "1.0.0")] fn atan(self) -> Self; /// Computes the four quadrant arctangent of a number, `y`, and another /// number `x`. Return value is in radians in the range [-pi, pi]. #[stable(feature = "grandfathered", since = "1.0.0")] fn atan2(self, other: Self) -> Self; /// Simultaneously computes the sine and cosine of the number, `x`. Returns /// `(sin(x), cos(x))`. #[stable(feature = "grandfathered", since = "1.0.0")] fn sin_cos(self) -> (Self, Self); /// Returns the exponential of the number, minus 1, in a way that is /// accurate even if the number is close to zero. #[unstable(feature = "std_misc", reason = "may be renamed")] fn exp_m1(self) -> Self; /// Returns the natural logarithm of the number plus 1 (`ln(1+n)`) more /// accurately than if the operations were performed separately. #[unstable(feature = "std_misc", reason = "may be renamed")] fn ln_1p(self) -> Self; /// Hyperbolic sine function. #[stable(feature = "grandfathered", since = "1.0.0")] fn sinh(self) -> Self; /// Hyperbolic cosine function. #[stable(feature = "grandfathered", since = "1.0.0")] fn cosh(self) -> Self; /// Hyperbolic tangent function. #[stable(feature = "grandfathered", since = "1.0.0")] fn tanh(self) -> Self; /// Inverse hyperbolic sine function. #[stable(feature = "grandfathered", since = "1.0.0")] fn asinh(self) -> Self; /// Inverse hyperbolic cosine function. #[stable(feature = "grandfathered", since = "1.0.0")] fn acosh(self) -> Self; /// Inverse hyperbolic tangent function. #[stable(feature = "grandfathered", since = "1.0.0")] fn atanh(self) -> Self; } /// Helper function for testing numeric operations #[cfg(test)] pub fn test_num(ten: T, two: T) where T: PartialEq + NumCast + Add + Sub + Mul + Div + Rem + Show + Copy { assert_eq!(ten.add(two), cast(12i).unwrap()); assert_eq!(ten.sub(two), cast(8i).unwrap()); assert_eq!(ten.mul(two), cast(20i).unwrap()); assert_eq!(ten.div(two), cast(5i).unwrap()); assert_eq!(ten.rem(two), cast(0i).unwrap()); assert_eq!(ten.add(two), ten + two); assert_eq!(ten.sub(two), ten - two); assert_eq!(ten.mul(two), ten * two); assert_eq!(ten.div(two), ten / two); assert_eq!(ten.rem(two), ten % two); } #[cfg(test)] mod tests { use prelude::v1::*; use super::*; use i8; use i16; use i32; use i64; use int; use u8; use u16; use u32; use u64; use uint; macro_rules! test_cast_20 { ($_20:expr) => ({ let _20 = $_20; assert_eq!(20u, _20.to_uint().unwrap()); assert_eq!(20u8, _20.to_u8().unwrap()); assert_eq!(20u16, _20.to_u16().unwrap()); assert_eq!(20u32, _20.to_u32().unwrap()); assert_eq!(20u64, _20.to_u64().unwrap()); assert_eq!(20i, _20.to_int().unwrap()); assert_eq!(20i8, _20.to_i8().unwrap()); assert_eq!(20i16, _20.to_i16().unwrap()); assert_eq!(20i32, _20.to_i32().unwrap()); assert_eq!(20i64, _20.to_i64().unwrap()); assert_eq!(20f32, _20.to_f32().unwrap()); assert_eq!(20f64, _20.to_f64().unwrap()); assert_eq!(_20, NumCast::from(20u).unwrap()); assert_eq!(_20, NumCast::from(20u8).unwrap()); assert_eq!(_20, NumCast::from(20u16).unwrap()); assert_eq!(_20, NumCast::from(20u32).unwrap()); assert_eq!(_20, NumCast::from(20u64).unwrap()); assert_eq!(_20, NumCast::from(20i).unwrap()); assert_eq!(_20, NumCast::from(20i8).unwrap()); assert_eq!(_20, NumCast::from(20i16).unwrap()); assert_eq!(_20, NumCast::from(20i32).unwrap()); assert_eq!(_20, NumCast::from(20i64).unwrap()); assert_eq!(_20, NumCast::from(20f32).unwrap()); assert_eq!(_20, NumCast::from(20f64).unwrap()); assert_eq!(_20, cast(20u).unwrap()); assert_eq!(_20, cast(20u8).unwrap()); assert_eq!(_20, cast(20u16).unwrap()); assert_eq!(_20, cast(20u32).unwrap()); assert_eq!(_20, cast(20u64).unwrap()); assert_eq!(_20, cast(20i).unwrap()); assert_eq!(_20, cast(20i8).unwrap()); assert_eq!(_20, cast(20i16).unwrap()); assert_eq!(_20, cast(20i32).unwrap()); assert_eq!(_20, cast(20i64).unwrap()); assert_eq!(_20, cast(20f32).unwrap()); assert_eq!(_20, cast(20f64).unwrap()); }) } #[test] fn test_u8_cast() { test_cast_20!(20u8) } #[test] fn test_u16_cast() { test_cast_20!(20u16) } #[test] fn test_u32_cast() { test_cast_20!(20u32) } #[test] fn test_u64_cast() { test_cast_20!(20u64) } #[test] fn test_uint_cast() { test_cast_20!(20u) } #[test] fn test_i8_cast() { test_cast_20!(20i8) } #[test] fn test_i16_cast() { test_cast_20!(20i16) } #[test] fn test_i32_cast() { test_cast_20!(20i32) } #[test] fn test_i64_cast() { test_cast_20!(20i64) } #[test] fn test_int_cast() { test_cast_20!(20i) } #[test] fn test_f32_cast() { test_cast_20!(20f32) } #[test] fn test_f64_cast() { test_cast_20!(20f64) } #[test] fn test_cast_range_int_min() { assert_eq!(int::MIN.to_int(), Some(int::MIN as int)); assert_eq!(int::MIN.to_i8(), None); assert_eq!(int::MIN.to_i16(), None); // int::MIN.to_i32() is word-size specific assert_eq!(int::MIN.to_i64(), Some(int::MIN as i64)); assert_eq!(int::MIN.to_uint(), None); assert_eq!(int::MIN.to_u8(), None); assert_eq!(int::MIN.to_u16(), None); assert_eq!(int::MIN.to_u32(), None); assert_eq!(int::MIN.to_u64(), None); #[cfg(target_pointer_width = "32")] fn check_word_size() { assert_eq!(int::MIN.to_i32(), Some(int::MIN as i32)); } #[cfg(target_pointer_width = "64")] fn check_word_size() { assert_eq!(int::MIN.to_i32(), None); } check_word_size(); } #[test] fn test_cast_range_i8_min() { assert_eq!(i8::MIN.to_int(), Some(i8::MIN as int)); assert_eq!(i8::MIN.to_i8(), Some(i8::MIN as i8)); assert_eq!(i8::MIN.to_i16(), Some(i8::MIN as i16)); assert_eq!(i8::MIN.to_i32(), Some(i8::MIN as i32)); assert_eq!(i8::MIN.to_i64(), Some(i8::MIN as i64)); assert_eq!(i8::MIN.to_uint(), None); assert_eq!(i8::MIN.to_u8(), None); assert_eq!(i8::MIN.to_u16(), None); assert_eq!(i8::MIN.to_u32(), None); assert_eq!(i8::MIN.to_u64(), None); } #[test] fn test_cast_range_i16_min() { assert_eq!(i16::MIN.to_int(), Some(i16::MIN as int)); assert_eq!(i16::MIN.to_i8(), None); assert_eq!(i16::MIN.to_i16(), Some(i16::MIN as i16)); assert_eq!(i16::MIN.to_i32(), Some(i16::MIN as i32)); assert_eq!(i16::MIN.to_i64(), Some(i16::MIN as i64)); assert_eq!(i16::MIN.to_uint(), None); assert_eq!(i16::MIN.to_u8(), None); assert_eq!(i16::MIN.to_u16(), None); assert_eq!(i16::MIN.to_u32(), None); assert_eq!(i16::MIN.to_u64(), None); } #[test] fn test_cast_range_i32_min() { assert_eq!(i32::MIN.to_int(), Some(i32::MIN as int)); assert_eq!(i32::MIN.to_i8(), None); assert_eq!(i32::MIN.to_i16(), None); assert_eq!(i32::MIN.to_i32(), Some(i32::MIN as i32)); assert_eq!(i32::MIN.to_i64(), Some(i32::MIN as i64)); assert_eq!(i32::MIN.to_uint(), None); assert_eq!(i32::MIN.to_u8(), None); assert_eq!(i32::MIN.to_u16(), None); assert_eq!(i32::MIN.to_u32(), None); assert_eq!(i32::MIN.to_u64(), None); } #[test] fn test_cast_range_i64_min() { // i64::MIN.to_int() is word-size specific assert_eq!(i64::MIN.to_i8(), None); assert_eq!(i64::MIN.to_i16(), None); assert_eq!(i64::MIN.to_i32(), None); assert_eq!(i64::MIN.to_i64(), Some(i64::MIN as i64)); assert_eq!(i64::MIN.to_uint(), None); assert_eq!(i64::MIN.to_u8(), None); assert_eq!(i64::MIN.to_u16(), None); assert_eq!(i64::MIN.to_u32(), None); assert_eq!(i64::MIN.to_u64(), None); #[cfg(target_pointer_width = "32")] fn check_word_size() { assert_eq!(i64::MIN.to_int(), None); } #[cfg(target_pointer_width = "64")] fn check_word_size() { assert_eq!(i64::MIN.to_int(), Some(i64::MIN as int)); } check_word_size(); } #[test] fn test_cast_range_int_max() { assert_eq!(int::MAX.to_int(), Some(int::MAX as int)); assert_eq!(int::MAX.to_i8(), None); assert_eq!(int::MAX.to_i16(), None); // int::MAX.to_i32() is word-size specific assert_eq!(int::MAX.to_i64(), Some(int::MAX as i64)); assert_eq!(int::MAX.to_u8(), None); assert_eq!(int::MAX.to_u16(), None); // int::MAX.to_u32() is word-size specific assert_eq!(int::MAX.to_u64(), Some(int::MAX as u64)); #[cfg(target_pointer_width = "32")] fn check_word_size() { assert_eq!(int::MAX.to_i32(), Some(int::MAX as i32)); assert_eq!(int::MAX.to_u32(), Some(int::MAX as u32)); } #[cfg(target_pointer_width = "64")] fn check_word_size() { assert_eq!(int::MAX.to_i32(), None); assert_eq!(int::MAX.to_u32(), None); } check_word_size(); } #[test] fn test_cast_range_i8_max() { assert_eq!(i8::MAX.to_int(), Some(i8::MAX as int)); assert_eq!(i8::MAX.to_i8(), Some(i8::MAX as i8)); assert_eq!(i8::MAX.to_i16(), Some(i8::MAX as i16)); assert_eq!(i8::MAX.to_i32(), Some(i8::MAX as i32)); assert_eq!(i8::MAX.to_i64(), Some(i8::MAX as i64)); assert_eq!(i8::MAX.to_uint(), Some(i8::MAX as uint)); assert_eq!(i8::MAX.to_u8(), Some(i8::MAX as u8)); assert_eq!(i8::MAX.to_u16(), Some(i8::MAX as u16)); assert_eq!(i8::MAX.to_u32(), Some(i8::MAX as u32)); assert_eq!(i8::MAX.to_u64(), Some(i8::MAX as u64)); } #[test] fn test_cast_range_i16_max() { assert_eq!(i16::MAX.to_int(), Some(i16::MAX as int)); assert_eq!(i16::MAX.to_i8(), None); assert_eq!(i16::MAX.to_i16(), Some(i16::MAX as i16)); assert_eq!(i16::MAX.to_i32(), Some(i16::MAX as i32)); assert_eq!(i16::MAX.to_i64(), Some(i16::MAX as i64)); assert_eq!(i16::MAX.to_uint(), Some(i16::MAX as uint)); assert_eq!(i16::MAX.to_u8(), None); assert_eq!(i16::MAX.to_u16(), Some(i16::MAX as u16)); assert_eq!(i16::MAX.to_u32(), Some(i16::MAX as u32)); assert_eq!(i16::MAX.to_u64(), Some(i16::MAX as u64)); } #[test] fn test_cast_range_i32_max() { assert_eq!(i32::MAX.to_int(), Some(i32::MAX as int)); assert_eq!(i32::MAX.to_i8(), None); assert_eq!(i32::MAX.to_i16(), None); assert_eq!(i32::MAX.to_i32(), Some(i32::MAX as i32)); assert_eq!(i32::MAX.to_i64(), Some(i32::MAX as i64)); assert_eq!(i32::MAX.to_uint(), Some(i32::MAX as uint)); assert_eq!(i32::MAX.to_u8(), None); assert_eq!(i32::MAX.to_u16(), None); assert_eq!(i32::MAX.to_u32(), Some(i32::MAX as u32)); assert_eq!(i32::MAX.to_u64(), Some(i32::MAX as u64)); } #[test] fn test_cast_range_i64_max() { // i64::MAX.to_int() is word-size specific assert_eq!(i64::MAX.to_i8(), None); assert_eq!(i64::MAX.to_i16(), None); assert_eq!(i64::MAX.to_i32(), None); assert_eq!(i64::MAX.to_i64(), Some(i64::MAX as i64)); // i64::MAX.to_uint() is word-size specific assert_eq!(i64::MAX.to_u8(), None); assert_eq!(i64::MAX.to_u16(), None); assert_eq!(i64::MAX.to_u32(), None); assert_eq!(i64::MAX.to_u64(), Some(i64::MAX as u64)); #[cfg(target_pointer_width = "32")] fn check_word_size() { assert_eq!(i64::MAX.to_int(), None); assert_eq!(i64::MAX.to_uint(), None); } #[cfg(target_pointer_width = "64")] fn check_word_size() { assert_eq!(i64::MAX.to_int(), Some(i64::MAX as int)); assert_eq!(i64::MAX.to_uint(), Some(i64::MAX as uint)); } check_word_size(); } #[test] fn test_cast_range_uint_min() { assert_eq!(uint::MIN.to_int(), Some(uint::MIN as int)); assert_eq!(uint::MIN.to_i8(), Some(uint::MIN as i8)); assert_eq!(uint::MIN.to_i16(), Some(uint::MIN as i16)); assert_eq!(uint::MIN.to_i32(), Some(uint::MIN as i32)); assert_eq!(uint::MIN.to_i64(), Some(uint::MIN as i64)); assert_eq!(uint::MIN.to_uint(), Some(uint::MIN as uint)); assert_eq!(uint::MIN.to_u8(), Some(uint::MIN as u8)); assert_eq!(uint::MIN.to_u16(), Some(uint::MIN as u16)); assert_eq!(uint::MIN.to_u32(), Some(uint::MIN as u32)); assert_eq!(uint::MIN.to_u64(), Some(uint::MIN as u64)); } #[test] fn test_cast_range_u8_min() { assert_eq!(u8::MIN.to_int(), Some(u8::MIN as int)); assert_eq!(u8::MIN.to_i8(), Some(u8::MIN as i8)); assert_eq!(u8::MIN.to_i16(), Some(u8::MIN as i16)); assert_eq!(u8::MIN.to_i32(), Some(u8::MIN as i32)); assert_eq!(u8::MIN.to_i64(), Some(u8::MIN as i64)); assert_eq!(u8::MIN.to_uint(), Some(u8::MIN as uint)); assert_eq!(u8::MIN.to_u8(), Some(u8::MIN as u8)); assert_eq!(u8::MIN.to_u16(), Some(u8::MIN as u16)); assert_eq!(u8::MIN.to_u32(), Some(u8::MIN as u32)); assert_eq!(u8::MIN.to_u64(), Some(u8::MIN as u64)); } #[test] fn test_cast_range_u16_min() { assert_eq!(u16::MIN.to_int(), Some(u16::MIN as int)); assert_eq!(u16::MIN.to_i8(), Some(u16::MIN as i8)); assert_eq!(u16::MIN.to_i16(), Some(u16::MIN as i16)); assert_eq!(u16::MIN.to_i32(), Some(u16::MIN as i32)); assert_eq!(u16::MIN.to_i64(), Some(u16::MIN as i64)); assert_eq!(u16::MIN.to_uint(), Some(u16::MIN as uint)); assert_eq!(u16::MIN.to_u8(), Some(u16::MIN as u8)); assert_eq!(u16::MIN.to_u16(), Some(u16::MIN as u16)); assert_eq!(u16::MIN.to_u32(), Some(u16::MIN as u32)); assert_eq!(u16::MIN.to_u64(), Some(u16::MIN as u64)); } #[test] fn test_cast_range_u32_min() { assert_eq!(u32::MIN.to_int(), Some(u32::MIN as int)); assert_eq!(u32::MIN.to_i8(), Some(u32::MIN as i8)); assert_eq!(u32::MIN.to_i16(), Some(u32::MIN as i16)); assert_eq!(u32::MIN.to_i32(), Some(u32::MIN as i32)); assert_eq!(u32::MIN.to_i64(), Some(u32::MIN as i64)); assert_eq!(u32::MIN.to_uint(), Some(u32::MIN as uint)); assert_eq!(u32::MIN.to_u8(), Some(u32::MIN as u8)); assert_eq!(u32::MIN.to_u16(), Some(u32::MIN as u16)); assert_eq!(u32::MIN.to_u32(), Some(u32::MIN as u32)); assert_eq!(u32::MIN.to_u64(), Some(u32::MIN as u64)); } #[test] fn test_cast_range_u64_min() { assert_eq!(u64::MIN.to_int(), Some(u64::MIN as int)); assert_eq!(u64::MIN.to_i8(), Some(u64::MIN as i8)); assert_eq!(u64::MIN.to_i16(), Some(u64::MIN as i16)); assert_eq!(u64::MIN.to_i32(), Some(u64::MIN as i32)); assert_eq!(u64::MIN.to_i64(), Some(u64::MIN as i64)); assert_eq!(u64::MIN.to_uint(), Some(u64::MIN as uint)); assert_eq!(u64::MIN.to_u8(), Some(u64::MIN as u8)); assert_eq!(u64::MIN.to_u16(), Some(u64::MIN as u16)); assert_eq!(u64::MIN.to_u32(), Some(u64::MIN as u32)); assert_eq!(u64::MIN.to_u64(), Some(u64::MIN as u64)); } #[test] fn test_cast_range_uint_max() { assert_eq!(uint::MAX.to_int(), None); assert_eq!(uint::MAX.to_i8(), None); assert_eq!(uint::MAX.to_i16(), None); assert_eq!(uint::MAX.to_i32(), None); // uint::MAX.to_i64() is word-size specific assert_eq!(uint::MAX.to_u8(), None); assert_eq!(uint::MAX.to_u16(), None); // uint::MAX.to_u32() is word-size specific assert_eq!(uint::MAX.to_u64(), Some(uint::MAX as u64)); #[cfg(target_pointer_width = "32")] fn check_word_size() { assert_eq!(uint::MAX.to_u32(), Some(uint::MAX as u32)); assert_eq!(uint::MAX.to_i64(), Some(uint::MAX as i64)); } #[cfg(target_pointer_width = "64")] fn check_word_size() { assert_eq!(uint::MAX.to_u32(), None); assert_eq!(uint::MAX.to_i64(), None); } check_word_size(); } #[test] fn test_cast_range_u8_max() { assert_eq!(u8::MAX.to_int(), Some(u8::MAX as int)); assert_eq!(u8::MAX.to_i8(), None); assert_eq!(u8::MAX.to_i16(), Some(u8::MAX as i16)); assert_eq!(u8::MAX.to_i32(), Some(u8::MAX as i32)); assert_eq!(u8::MAX.to_i64(), Some(u8::MAX as i64)); assert_eq!(u8::MAX.to_uint(), Some(u8::MAX as uint)); assert_eq!(u8::MAX.to_u8(), Some(u8::MAX as u8)); assert_eq!(u8::MAX.to_u16(), Some(u8::MAX as u16)); assert_eq!(u8::MAX.to_u32(), Some(u8::MAX as u32)); assert_eq!(u8::MAX.to_u64(), Some(u8::MAX as u64)); } #[test] fn test_cast_range_u16_max() { assert_eq!(u16::MAX.to_int(), Some(u16::MAX as int)); assert_eq!(u16::MAX.to_i8(), None); assert_eq!(u16::MAX.to_i16(), None); assert_eq!(u16::MAX.to_i32(), Some(u16::MAX as i32)); assert_eq!(u16::MAX.to_i64(), Some(u16::MAX as i64)); assert_eq!(u16::MAX.to_uint(), Some(u16::MAX as uint)); assert_eq!(u16::MAX.to_u8(), None); assert_eq!(u16::MAX.to_u16(), Some(u16::MAX as u16)); assert_eq!(u16::MAX.to_u32(), Some(u16::MAX as u32)); assert_eq!(u16::MAX.to_u64(), Some(u16::MAX as u64)); } #[test] fn test_cast_range_u32_max() { // u32::MAX.to_int() is word-size specific assert_eq!(u32::MAX.to_i8(), None); assert_eq!(u32::MAX.to_i16(), None); assert_eq!(u32::MAX.to_i32(), None); assert_eq!(u32::MAX.to_i64(), Some(u32::MAX as i64)); assert_eq!(u32::MAX.to_uint(), Some(u32::MAX as uint)); assert_eq!(u32::MAX.to_u8(), None); assert_eq!(u32::MAX.to_u16(), None); assert_eq!(u32::MAX.to_u32(), Some(u32::MAX as u32)); assert_eq!(u32::MAX.to_u64(), Some(u32::MAX as u64)); #[cfg(target_pointer_width = "32")] fn check_word_size() { assert_eq!(u32::MAX.to_int(), None); } #[cfg(target_pointer_width = "64")] fn check_word_size() { assert_eq!(u32::MAX.to_int(), Some(u32::MAX as int)); } check_word_size(); } #[test] fn test_cast_range_u64_max() { assert_eq!(u64::MAX.to_int(), None); assert_eq!(u64::MAX.to_i8(), None); assert_eq!(u64::MAX.to_i16(), None); assert_eq!(u64::MAX.to_i32(), None); assert_eq!(u64::MAX.to_i64(), None); // u64::MAX.to_uint() is word-size specific assert_eq!(u64::MAX.to_u8(), None); assert_eq!(u64::MAX.to_u16(), None); assert_eq!(u64::MAX.to_u32(), None); assert_eq!(u64::MAX.to_u64(), Some(u64::MAX as u64)); #[cfg(target_pointer_width = "32")] fn check_word_size() { assert_eq!(u64::MAX.to_uint(), None); } #[cfg(target_pointer_width = "64")] fn check_word_size() { assert_eq!(u64::MAX.to_uint(), Some(u64::MAX as uint)); } check_word_size(); } #[test] fn test_saturating_add_uint() { use uint::MAX; assert_eq!(3u.saturating_add(5u), 8u); assert_eq!(3u.saturating_add(MAX-1), MAX); assert_eq!(MAX.saturating_add(MAX), MAX); assert_eq!((MAX-2).saturating_add(1), MAX-1); } #[test] fn test_saturating_sub_uint() { use uint::MAX; assert_eq!(5u.saturating_sub(3u), 2u); assert_eq!(3u.saturating_sub(5u), 0u); assert_eq!(0u.saturating_sub(1u), 0u); assert_eq!((MAX-1).saturating_sub(MAX), 0); } #[test] fn test_saturating_add_int() { use int::{MIN,MAX}; assert_eq!(3i.saturating_add(5i), 8i); assert_eq!(3i.saturating_add(MAX-1), MAX); assert_eq!(MAX.saturating_add(MAX), MAX); assert_eq!((MAX-2).saturating_add(1), MAX-1); assert_eq!(3i.saturating_add(-5i), -2i); assert_eq!(MIN.saturating_add(-1i), MIN); assert_eq!((-2i).saturating_add(-MAX), MIN); } #[test] fn test_saturating_sub_int() { use int::{MIN,MAX}; assert_eq!(3i.saturating_sub(5i), -2i); assert_eq!(MIN.saturating_sub(1i), MIN); assert_eq!((-2i).saturating_sub(MAX), MIN); assert_eq!(3i.saturating_sub(-5i), 8i); assert_eq!(3i.saturating_sub(-(MAX-1)), MAX); assert_eq!(MAX.saturating_sub(-MAX), MAX); assert_eq!((MAX-2).saturating_sub(-1), MAX-1); } #[test] fn test_checked_add() { let five_less = uint::MAX - 5; assert_eq!(five_less.checked_add(0), Some(uint::MAX - 5)); assert_eq!(five_less.checked_add(1), Some(uint::MAX - 4)); assert_eq!(five_less.checked_add(2), Some(uint::MAX - 3)); assert_eq!(five_less.checked_add(3), Some(uint::MAX - 2)); assert_eq!(five_less.checked_add(4), Some(uint::MAX - 1)); assert_eq!(five_less.checked_add(5), Some(uint::MAX)); assert_eq!(five_less.checked_add(6), None); assert_eq!(five_less.checked_add(7), None); } #[test] fn test_checked_sub() { assert_eq!(5u.checked_sub(0), Some(5)); assert_eq!(5u.checked_sub(1), Some(4)); assert_eq!(5u.checked_sub(2), Some(3)); assert_eq!(5u.checked_sub(3), Some(2)); assert_eq!(5u.checked_sub(4), Some(1)); assert_eq!(5u.checked_sub(5), Some(0)); assert_eq!(5u.checked_sub(6), None); assert_eq!(5u.checked_sub(7), None); } #[test] fn test_checked_mul() { let third = uint::MAX / 3; assert_eq!(third.checked_mul(0), Some(0)); assert_eq!(third.checked_mul(1), Some(third)); assert_eq!(third.checked_mul(2), Some(third * 2)); assert_eq!(third.checked_mul(3), Some(third * 3)); assert_eq!(third.checked_mul(4), None); } macro_rules! test_is_power_of_two { ($test_name:ident, $T:ident) => ( fn $test_name() { #![test] assert_eq!((0 as $T).is_power_of_two(), false); assert_eq!((1 as $T).is_power_of_two(), true); assert_eq!((2 as $T).is_power_of_two(), true); assert_eq!((3 as $T).is_power_of_two(), false); assert_eq!((4 as $T).is_power_of_two(), true); assert_eq!((5 as $T).is_power_of_two(), false); assert!(($T::MAX / 2 + 1).is_power_of_two(), true); } ) } test_is_power_of_two!{ test_is_power_of_two_u8, u8 } test_is_power_of_two!{ test_is_power_of_two_u16, u16 } test_is_power_of_two!{ test_is_power_of_two_u32, u32 } test_is_power_of_two!{ test_is_power_of_two_u64, u64 } test_is_power_of_two!{ test_is_power_of_two_uint, uint } macro_rules! test_next_power_of_two { ($test_name:ident, $T:ident) => ( fn $test_name() { #![test] assert_eq!((0 as $T).next_power_of_two(), 1); let mut next_power = 1; for i in range::<$T>(1, 40) { assert_eq!(i.next_power_of_two(), next_power); if i == next_power { next_power *= 2 } } } ) } test_next_power_of_two! { test_next_power_of_two_u8, u8 } test_next_power_of_two! { test_next_power_of_two_u16, u16 } test_next_power_of_two! { test_next_power_of_two_u32, u32 } test_next_power_of_two! { test_next_power_of_two_u64, u64 } test_next_power_of_two! { test_next_power_of_two_uint, uint } macro_rules! test_checked_next_power_of_two { ($test_name:ident, $T:ident) => ( fn $test_name() { #![test] assert_eq!((0 as $T).checked_next_power_of_two(), Some(1)); assert!(($T::MAX / 2).checked_next_power_of_two().is_some()); assert_eq!(($T::MAX - 1).checked_next_power_of_two(), None); assert_eq!($T::MAX.checked_next_power_of_two(), None); let mut next_power = 1; for i in range::<$T>(1, 40) { assert_eq!(i.checked_next_power_of_two(), Some(next_power)); if i == next_power { next_power *= 2 } } } ) } test_checked_next_power_of_two! { test_checked_next_power_of_two_u8, u8 } test_checked_next_power_of_two! { test_checked_next_power_of_two_u16, u16 } test_checked_next_power_of_two! { test_checked_next_power_of_two_u32, u32 } test_checked_next_power_of_two! { test_checked_next_power_of_two_u64, u64 } test_checked_next_power_of_two! { test_checked_next_power_of_two_uint, uint } #[derive(PartialEq, Show)] struct Value { x: int } impl ToPrimitive for Value { fn to_i64(&self) -> Option { self.x.to_i64() } fn to_u64(&self) -> Option { self.x.to_u64() } } impl FromPrimitive for Value { fn from_i64(n: i64) -> Option { Some(Value { x: n as int }) } fn from_u64(n: u64) -> Option { Some(Value { x: n as int }) } } #[test] fn test_to_primitive() { let value = Value { x: 5 }; assert_eq!(value.to_int(), Some(5)); assert_eq!(value.to_i8(), Some(5)); assert_eq!(value.to_i16(), Some(5)); assert_eq!(value.to_i32(), Some(5)); assert_eq!(value.to_i64(), Some(5)); assert_eq!(value.to_uint(), Some(5)); assert_eq!(value.to_u8(), Some(5)); assert_eq!(value.to_u16(), Some(5)); assert_eq!(value.to_u32(), Some(5)); assert_eq!(value.to_u64(), Some(5)); assert_eq!(value.to_f32(), Some(5f32)); assert_eq!(value.to_f64(), Some(5f64)); } #[test] fn test_from_primitive() { assert_eq!(from_int(5), Some(Value { x: 5 })); assert_eq!(from_i8(5), Some(Value { x: 5 })); assert_eq!(from_i16(5), Some(Value { x: 5 })); assert_eq!(from_i32(5), Some(Value { x: 5 })); assert_eq!(from_i64(5), Some(Value { x: 5 })); assert_eq!(from_uint(5), Some(Value { x: 5 })); assert_eq!(from_u8(5), Some(Value { x: 5 })); assert_eq!(from_u16(5), Some(Value { x: 5 })); assert_eq!(from_u32(5), Some(Value { x: 5 })); assert_eq!(from_u64(5), Some(Value { x: 5 })); assert_eq!(from_f32(5f32), Some(Value { x: 5 })); assert_eq!(from_f64(5f64), Some(Value { x: 5 })); } #[test] fn test_pow() { fn naive_pow(base: T, exp: uint) -> T { let one: T = Int::one(); range(0, exp).fold(one, |acc, _| acc * base) } macro_rules! assert_pow { (($num:expr, $exp:expr) => $expected:expr) => {{ let result = $num.pow($exp); assert_eq!(result, $expected); assert_eq!(result, naive_pow($num, $exp)); }} } assert_pow!((3i, 0 ) => 1); assert_pow!((5i, 1 ) => 5); assert_pow!((-4i, 2 ) => 16); assert_pow!((8i, 3 ) => 512); assert_pow!((2u64, 50) => 1125899906842624); } } #[cfg(test)] mod bench { extern crate test; use self::test::Bencher; use num::Int; use prelude::v1::*; #[bench] fn bench_pow_function(b: &mut Bencher) { let v = range(0, 1024u).collect::>(); b.iter(|| {v.iter().fold(0u, |old, new| old.pow(*new));}); } }