use clippy_utils::diagnostics::span_lint_and_help; use clippy_utils::{in_macro, is_automatically_derived, is_default_equivalent, remove_blocks}; use rustc_hir::{ def::{DefKind, Res}, Body, Expr, ExprKind, GenericArg, Impl, ImplItemKind, Item, ItemKind, Node, PathSegment, QPath, TyKind, }; use rustc_lint::{LateContext, LateLintPass}; use rustc_session::{declare_lint_pass, declare_tool_lint}; use rustc_span::sym; declare_clippy_lint! { /// ### What it does /// Detects manual `std::default::Default` implementations that are identical to a derived implementation. /// /// ### Why is this bad? /// It is less concise. /// /// ### Example /// ```rust /// struct Foo { /// bar: bool /// } /// /// impl std::default::Default for Foo { /// fn default() -> Self { /// Self { /// bar: false /// } /// } /// } /// ``` /// /// Could be written as: /// /// ```rust /// #[derive(Default)] /// struct Foo { /// bar: bool /// } /// ``` /// /// ### Known problems /// Derive macros [sometimes use incorrect bounds](https://github.com/rust-lang/rust/issues/26925) /// in generic types and the user defined `impl` maybe is more generalized or /// specialized than what derive will produce. This lint can't detect the manual `impl` /// has exactly equal bounds, and therefore this lint is disabled for types with /// generic parameters. /// pub DERIVABLE_IMPLS, complexity, "manual implementation of the `Default` trait which is equal to a derive" } declare_lint_pass!(DerivableImpls => [DERIVABLE_IMPLS]); fn is_path_self(e: &Expr<'_>) -> bool { if let ExprKind::Path(QPath::Resolved(_, p)) = e.kind { matches!(p.res, Res::SelfCtor(..) | Res::Def(DefKind::Ctor(..), _)) } else { false } } impl<'tcx> LateLintPass<'tcx> for DerivableImpls { fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx Item<'_>) { if_chain! { if let ItemKind::Impl(Impl { of_trait: Some(ref trait_ref), items: [child], self_ty, .. }) = item.kind; if let attrs = cx.tcx.hir().attrs(item.hir_id()); if !is_automatically_derived(attrs); if !in_macro(item.span); if let Some(def_id) = trait_ref.trait_def_id(); if cx.tcx.is_diagnostic_item(sym::Default, def_id); if let impl_item_hir = child.id.hir_id(); if let Some(Node::ImplItem(impl_item)) = cx.tcx.hir().find(impl_item_hir); if let ImplItemKind::Fn(_, b) = &impl_item.kind; if let Body { value: func_expr, .. } = cx.tcx.hir().body(*b); if let Some(adt_def) = cx.tcx.type_of(item.def_id).ty_adt_def(); if !attrs.iter().any(|attr| attr.doc_str().is_some()); if let child_attrs = cx.tcx.hir().attrs(impl_item_hir); if !child_attrs.iter().any(|attr| attr.doc_str().is_some()); then { if let TyKind::Path(QPath::Resolved(_, p)) = self_ty.kind { if let Some(PathSegment { args: Some(a), .. }) = p.segments.last() { for arg in a.args { if !matches!(arg, GenericArg::Lifetime(_)) { return; } } } } let should_emit = match remove_blocks(func_expr).kind { ExprKind::Tup(fields) => fields.iter().all(|e| is_default_equivalent(cx, e)), ExprKind::Call(callee, args) if is_path_self(callee) => args.iter().all(|e| is_default_equivalent(cx, e)), ExprKind::Struct(_, fields, _) => fields.iter().all(|ef| is_default_equivalent(cx, ef.expr)), _ => false, }; if should_emit { let path_string = cx.tcx.def_path_str(adt_def.did); span_lint_and_help( cx, DERIVABLE_IMPLS, item.span, "this `impl` can be derived", None, &format!("try annotating `{}` with `#[derive(Default)]`", path_string), ); } } } } }