use gccjit::{LValue, RValue, ToRValue, Type}; use rustc_ast::ast::{InlineAsmOptions, InlineAsmTemplatePiece}; use rustc_codegen_ssa::mir::operand::OperandValue; use rustc_codegen_ssa::mir::place::PlaceRef; use rustc_codegen_ssa::traits::{AsmBuilderMethods, AsmMethods, BaseTypeMethods, BuilderMethods, GlobalAsmOperandRef, InlineAsmOperandRef}; use rustc_hir::LlvmInlineAsmInner; use rustc_middle::{bug, ty::Instance}; use rustc_span::{Span, Symbol}; use rustc_target::asm::*; use std::borrow::Cow; use crate::builder::Builder; use crate::context::CodegenCx; use crate::type_of::LayoutGccExt; // Rust asm! and GCC Extended Asm semantics differ substantially. // // 1. Rust asm operands go along as one list of operands. Operands themselves indicate // if they're "in" or "out". "In" and "out" operands can interleave. One operand can be // both "in" and "out" (`inout(reg)`). // // GCC asm has two different lists for "in" and "out" operands. In terms of gccjit, // this means that all "out" operands must go before "in" operands. "In" and "out" operands // cannot interleave. // // 2. Operand lists in both Rust and GCC are indexed. Index starts from 0. Indexes are important // because the asm template refers to operands by index. // // Mapping from Rust to GCC index would be 1-1 if it wasn't for... // // 3. Clobbers. GCC has a separate list of clobbers, and clobbers don't have indexes. // Contrary, Rust expresses clobbers through "out" operands that aren't tied to // a variable (`_`), and such "clobbers" do have index. // // 4. Furthermore, GCC Extended Asm does not support explicit register constraints // (like `out("eax")`) directly, offering so-called "local register variables" // as a workaround. These variables need to be declared and initialized *before* // the Extended Asm block but *after* normal local variables // (see comment in `codegen_inline_asm` for explanation). // // With that in mind, let's see how we translate Rust syntax to GCC // (from now on, `CC` stands for "constraint code"): // // * `out(reg_class) var` -> translated to output operand: `"=CC"(var)` // * `inout(reg_class) var` -> translated to output operand: `"+CC"(var)` // * `in(reg_class) var` -> translated to input operand: `"CC"(var)` // // * `out(reg_class) _` -> translated to one `=r(tmp)`, where "tmp" is a temporary unused variable // // * `out("explicit register") _` -> not translated to any operands, register is simply added to clobbers list // // * `inout(reg_class) in_var => out_var` -> translated to two operands: // output: `"=CC"(in_var)` // input: `"num"(out_var)` where num is the GCC index // of the corresponding output operand // // * `inout(reg_class) in_var => _` -> same as `inout(reg_class) in_var => tmp`, // where "tmp" is a temporary unused variable // // * `out/in/inout("explicit register") var` -> translated to one or two operands as described above // with `"r"(var)` constraint, // and one register variable assigned to the desired register. // const ATT_SYNTAX_INS: &str = ".att_syntax noprefix\n\t"; const INTEL_SYNTAX_INS: &str = "\n\t.intel_syntax noprefix"; struct AsmOutOperand<'a, 'tcx, 'gcc> { rust_idx: usize, constraint: &'a str, late: bool, readwrite: bool, tmp_var: LValue<'gcc>, out_place: Option>> } struct AsmInOperand<'a, 'tcx> { rust_idx: usize, constraint: Cow<'a, str>, val: RValue<'tcx> } impl AsmOutOperand<'_, '_, '_> { fn to_constraint(&self) -> String { let mut res = String::with_capacity(self.constraint.len() + self.late as usize + 1); let sign = if self.readwrite { '+' } else { '=' }; res.push(sign); if !self.late { res.push('&'); } res.push_str(&self.constraint); res } } enum ConstraintOrRegister { Constraint(&'static str), Register(&'static str) } impl<'a, 'gcc, 'tcx> AsmBuilderMethods<'tcx> for Builder<'a, 'gcc, 'tcx> { fn codegen_llvm_inline_asm(&mut self, _ia: &LlvmInlineAsmInner, _outputs: Vec>>, _inputs: Vec>, span: Span) -> bool { self.sess().struct_span_err(span, "GCC backend does not support `llvm_asm!`") .help("consider using the `asm!` macro instead") .emit(); // We return `true` even if we've failed to generate the asm // because we want to suppress the "malformed inline assembly" error // generated by the frontend. true } fn codegen_inline_asm(&mut self, template: &[InlineAsmTemplatePiece], rust_operands: &[InlineAsmOperandRef<'tcx, Self>], options: InlineAsmOptions, span: &[Span], _instance: Instance<'_>, dest_catch_funclet: Option<(Self::BasicBlock, Self::BasicBlock, Option<&Self::Funclet>)>) { if dest_catch_funclet.is_some() { self.sess() .struct_span_err(span[0], "GCC backend does not support unwinding from inline asm") .emit(); return; } let asm_arch = self.tcx.sess.asm_arch.unwrap(); let is_x86 = matches!(asm_arch, InlineAsmArch::X86 | InlineAsmArch::X86_64); let att_dialect = is_x86 && options.contains(InlineAsmOptions::ATT_SYNTAX); let intel_dialect = is_x86 && !options.contains(InlineAsmOptions::ATT_SYNTAX); // GCC index of an output operand equals its position in the array let mut outputs = vec![]; // GCC index of an input operand equals its position in the array // added to `outputs.len()` let mut inputs = vec![]; // Clobbers collected from `out("explicit register") _` and `inout("expl_reg") var => _` let mut clobbers = vec![]; // We're trying to preallocate space for the template let mut constants_len = 0; // There are rules we must adhere to if we want GCC to do the right thing: // // * Every local variable that the asm block uses as an output must be declared *before* // the asm block. // * There must be no instructions whatsoever between the register variables and the asm. // // Therefore, the backend must generate the instructions strictly in this order: // // 1. Output variables. // 2. Register variables. // 3. The asm block. // // We also must make sure that no input operands are emitted before output operands. // // This is why we work in passes, first emitting local vars, then local register vars. // Also, we don't emit any asm operands immediately; we save them to // the one of the buffers to be emitted later. // 1. Normal variables (and saving operands to buffers). for (rust_idx, op) in rust_operands.iter().enumerate() { match *op { InlineAsmOperandRef::Out { reg, late, place } => { use ConstraintOrRegister::*; let (constraint, ty) = match (reg_to_gcc(reg), place) { (Constraint(constraint), Some(place)) => (constraint, place.layout.gcc_type(self.cx, false)), // When `reg` is a class and not an explicit register but the out place is not specified, // we need to create an unused output variable to assign the output to. This var // needs to be of a type that's "compatible" with the register class, but specific type // doesn't matter. (Constraint(constraint), None) => (constraint, dummy_output_type(self.cx, reg.reg_class())), (Register(_), Some(_)) => { // left for the next pass continue }, (Register(reg_name), None) => { // `clobber_abi` can add lots of clobbers that are not supported by the target, // such as AVX-512 registers, so we just ignore unsupported registers let is_target_supported = reg.reg_class().supported_types(asm_arch).iter() .any(|&(_, feature)| { if let Some(feature) = feature { self.tcx.sess.target_features.contains(&Symbol::intern(feature)) } else { true // Register class is unconditionally supported } }); if is_target_supported && !clobbers.contains(®_name) { clobbers.push(reg_name); } continue } }; let tmp_var = self.current_func().new_local(None, ty, "output_register"); outputs.push(AsmOutOperand { constraint, rust_idx, late, readwrite: false, tmp_var, out_place: place }); } InlineAsmOperandRef::In { reg, value } => { if let ConstraintOrRegister::Constraint(constraint) = reg_to_gcc(reg) { inputs.push(AsmInOperand { constraint: Cow::Borrowed(constraint), rust_idx, val: value.immediate() }); } else { // left for the next pass continue } } InlineAsmOperandRef::InOut { reg, late, in_value, out_place } => { let constraint = if let ConstraintOrRegister::Constraint(constraint) = reg_to_gcc(reg) { constraint } else { // left for the next pass continue }; // Rustc frontend guarantees that input and output types are "compatible", // so we can just use input var's type for the output variable. // // This decision is also backed by the fact that LLVM needs in and out // values to be of *exactly the same type*, not just "compatible". // I'm not sure if GCC is so picky too, but better safe than sorry. let ty = in_value.layout.gcc_type(self.cx, false); let tmp_var = self.current_func().new_local(None, ty, "output_register"); // If the out_place is None (i.e `inout(reg) _` syntax was used), we translate // it to one "readwrite (+) output variable", otherwise we translate it to two // "out and tied in" vars as described above. let readwrite = out_place.is_none(); outputs.push(AsmOutOperand { constraint, rust_idx, late, readwrite, tmp_var, out_place, }); if !readwrite { let out_gcc_idx = outputs.len() - 1; let constraint = Cow::Owned(out_gcc_idx.to_string()); inputs.push(AsmInOperand { constraint, rust_idx, val: in_value.immediate() }); } } InlineAsmOperandRef::Const { ref string } => { constants_len += string.len() + att_dialect as usize; } InlineAsmOperandRef::SymFn { instance } => { constants_len += self.tcx.symbol_name(instance).name.len(); } InlineAsmOperandRef::SymStatic { def_id } => { constants_len += self.tcx.symbol_name(Instance::mono(self.tcx, def_id)).name.len(); } } } // 2. Register variables. for (rust_idx, op) in rust_operands.iter().enumerate() { match *op { // `out("explicit register") var` InlineAsmOperandRef::Out { reg, late, place } => { if let ConstraintOrRegister::Register(reg_name) = reg_to_gcc(reg) { let out_place = if let Some(place) = place { place } else { // processed in the previous pass continue }; let ty = out_place.layout.gcc_type(self.cx, false); let tmp_var = self.current_func().new_local(None, ty, "output_register"); tmp_var.set_register_name(reg_name); outputs.push(AsmOutOperand { constraint: "r".into(), rust_idx, late, readwrite: false, tmp_var, out_place: Some(out_place) }); } // processed in the previous pass } // `in("explicit register") var` InlineAsmOperandRef::In { reg, value } => { if let ConstraintOrRegister::Register(reg_name) = reg_to_gcc(reg) { let ty = value.layout.gcc_type(self.cx, false); let reg_var = self.current_func().new_local(None, ty, "input_register"); reg_var.set_register_name(reg_name); self.llbb().add_assignment(None, reg_var, value.immediate()); inputs.push(AsmInOperand { constraint: "r".into(), rust_idx, val: reg_var.to_rvalue() }); } // processed in the previous pass } // `inout("explicit register") in_var => out_var` InlineAsmOperandRef::InOut { reg, late, in_value, out_place } => { if let ConstraintOrRegister::Register(reg_name) = reg_to_gcc(reg) { let out_place = if let Some(place) = out_place { place } else { // processed in the previous pass continue }; // See explanation in the first pass. let ty = in_value.layout.gcc_type(self.cx, false); let tmp_var = self.current_func().new_local(None, ty, "output_register"); tmp_var.set_register_name(reg_name); outputs.push(AsmOutOperand { constraint: "r".into(), rust_idx, late, readwrite: false, tmp_var, out_place: Some(out_place) }); let constraint = Cow::Owned((outputs.len() - 1).to_string()); inputs.push(AsmInOperand { constraint, rust_idx, val: in_value.immediate() }); } // processed in the previous pass } InlineAsmOperandRef::Const { .. } | InlineAsmOperandRef::SymFn { .. } | InlineAsmOperandRef::SymStatic { .. } => { // processed in the previous pass } } } // 3. Build the template string let mut template_str = String::with_capacity(estimate_template_length(template, constants_len, att_dialect)); if !intel_dialect { template_str.push_str(ATT_SYNTAX_INS); } for piece in template { match *piece { InlineAsmTemplatePiece::String(ref string) => { // TODO(@Commeownist): switch to `Iterator::intersperse` once it's stable let mut iter = string.split('%'); if let Some(s) = iter.next() { template_str.push_str(s); } for s in iter { template_str.push_str("%%"); template_str.push_str(s); } } InlineAsmTemplatePiece::Placeholder { operand_idx, modifier, span: _ } => { let mut push_to_template = |modifier, gcc_idx| { use std::fmt::Write; template_str.push('%'); if let Some(modifier) = modifier { template_str.push(modifier); } write!(template_str, "{}", gcc_idx).expect("pushing to string failed"); }; match rust_operands[operand_idx] { InlineAsmOperandRef::Out { reg, .. } => { let modifier = modifier_to_gcc(asm_arch, reg.reg_class(), modifier); let gcc_index = outputs.iter() .position(|op| operand_idx == op.rust_idx) .expect("wrong rust index"); push_to_template(modifier, gcc_index); } InlineAsmOperandRef::In { reg, .. } => { let modifier = modifier_to_gcc(asm_arch, reg.reg_class(), modifier); let in_gcc_index = inputs.iter() .position(|op| operand_idx == op.rust_idx) .expect("wrong rust index"); let gcc_index = in_gcc_index + outputs.len(); push_to_template(modifier, gcc_index); } InlineAsmOperandRef::InOut { reg, .. } => { let modifier = modifier_to_gcc(asm_arch, reg.reg_class(), modifier); // The input register is tied to the output, so we can just use the index of the output register let gcc_index = outputs.iter() .position(|op| operand_idx == op.rust_idx) .expect("wrong rust index"); push_to_template(modifier, gcc_index); } InlineAsmOperandRef::SymFn { instance } => { let name = self.tcx.symbol_name(instance).name; template_str.push_str(name); } InlineAsmOperandRef::SymStatic { def_id } => { // TODO(@Commeownist): This may not be sufficient for all kinds of statics. // Some statics may need the `@plt` suffix, like thread-local vars. let instance = Instance::mono(self.tcx, def_id); let name = self.tcx.symbol_name(instance).name; template_str.push_str(name); } InlineAsmOperandRef::Const { ref string } => { // Const operands get injected directly into the template if att_dialect { template_str.push('$'); } template_str.push_str(string); } } } } } if !intel_dialect { template_str.push_str(INTEL_SYNTAX_INS); } // 4. Generate Extended Asm block let block = self.llbb(); let extended_asm = block.add_extended_asm(None, &template_str); for op in &outputs { extended_asm.add_output_operand(None, &op.to_constraint(), op.tmp_var); } for op in &inputs { extended_asm.add_input_operand(None, &op.constraint, op.val); } for clobber in clobbers.iter() { extended_asm.add_clobber(clobber); } if !options.contains(InlineAsmOptions::PRESERVES_FLAGS) { // TODO(@Commeownist): I'm not 100% sure this one clobber is sufficient // on all architectures. For instance, what about FP stack? extended_asm.add_clobber("cc"); } if !options.contains(InlineAsmOptions::NOMEM) { extended_asm.add_clobber("memory"); } if !options.contains(InlineAsmOptions::PURE) { extended_asm.set_volatile_flag(true); } if !options.contains(InlineAsmOptions::NOSTACK) { // TODO(@Commeownist): figure out how to align stack } if options.contains(InlineAsmOptions::NORETURN) { let builtin_unreachable = self.context.get_builtin_function("__builtin_unreachable"); let builtin_unreachable: RValue<'gcc> = unsafe { std::mem::transmute(builtin_unreachable) }; self.call(self.type_void(), builtin_unreachable, &[], None); } // Write results to outputs. // // We need to do this because: // 1. Turning `PlaceRef` into `RValue` is error-prone and has nasty edge cases // (especially with current `rustc_backend_ssa` API). // 2. Not every output operand has an `out_place`, and it's required by `add_output_operand`. // // Instead, we generate a temporary output variable for each output operand, and then this loop, // generates `out_place = tmp_var;` assignments if out_place exists. for op in &outputs { if let Some(place) = op.out_place { OperandValue::Immediate(op.tmp_var.to_rvalue()).store(self, place); } } } } fn estimate_template_length(template: &[InlineAsmTemplatePiece], constants_len: usize, att_dialect: bool) -> usize { let len: usize = template.iter().map(|piece| { match *piece { InlineAsmTemplatePiece::String(ref string) => { string.len() } InlineAsmTemplatePiece::Placeholder { .. } => { // '%' + 1 char modifier + 1 char index 3 } } }) .sum(); // increase it by 5% to account for possible '%' signs that'll be duplicated // I pulled the number out of blue, but should be fair enough // as the upper bound let mut res = (len as f32 * 1.05) as usize + constants_len; if att_dialect { res += INTEL_SYNTAX_INS.len() + ATT_SYNTAX_INS.len(); } res } /// Converts a register class to a GCC constraint code. fn reg_to_gcc(reg: InlineAsmRegOrRegClass) -> ConstraintOrRegister { let constraint = match reg { // For vector registers LLVM wants the register name to match the type size. InlineAsmRegOrRegClass::Reg(reg) => { match reg { InlineAsmReg::X86(_) => { // TODO(antoyo): add support for vector register. // // // For explicit registers, we have to create a register variable: https://stackoverflow.com/a/31774784/389119 return ConstraintOrRegister::Register(match reg.name() { // Some of registers' names does not map 1-1 from rust to gcc "st(0)" => "st", name => name, }); } _ => unimplemented!(), } }, InlineAsmRegOrRegClass::RegClass(reg) => match reg { InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::preg) => unimplemented!(), InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::reg) => unimplemented!(), InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg) => unimplemented!(), InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg_low16) => unimplemented!(), InlineAsmRegClass::Arm(ArmInlineAsmRegClass::reg) => unimplemented!(), InlineAsmRegClass::Arm(ArmInlineAsmRegClass::reg_thumb) => unimplemented!(), InlineAsmRegClass::Arm(ArmInlineAsmRegClass::sreg) | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg_low16) | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg_low8) => unimplemented!(), InlineAsmRegClass::Arm(ArmInlineAsmRegClass::sreg_low16) | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg_low8) | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg_low4) => unimplemented!(), InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg) | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg) => unimplemented!(), InlineAsmRegClass::Bpf(_) => unimplemented!(), InlineAsmRegClass::Hexagon(HexagonInlineAsmRegClass::reg) => unimplemented!(), InlineAsmRegClass::Mips(MipsInlineAsmRegClass::reg) => unimplemented!(), InlineAsmRegClass::Mips(MipsInlineAsmRegClass::freg) => unimplemented!(), InlineAsmRegClass::Nvptx(NvptxInlineAsmRegClass::reg16) => unimplemented!(), InlineAsmRegClass::Nvptx(NvptxInlineAsmRegClass::reg32) => unimplemented!(), InlineAsmRegClass::Nvptx(NvptxInlineAsmRegClass::reg64) => unimplemented!(), InlineAsmRegClass::PowerPC(PowerPCInlineAsmRegClass::reg) => unimplemented!(), InlineAsmRegClass::PowerPC(PowerPCInlineAsmRegClass::reg_nonzero) => unimplemented!(), InlineAsmRegClass::PowerPC(PowerPCInlineAsmRegClass::freg) => unimplemented!(), InlineAsmRegClass::PowerPC(PowerPCInlineAsmRegClass::cr) | InlineAsmRegClass::PowerPC(PowerPCInlineAsmRegClass::xer) => { unreachable!("clobber-only") }, InlineAsmRegClass::RiscV(RiscVInlineAsmRegClass::reg) => unimplemented!(), InlineAsmRegClass::RiscV(RiscVInlineAsmRegClass::freg) => unimplemented!(), InlineAsmRegClass::RiscV(RiscVInlineAsmRegClass::vreg) => unimplemented!(), InlineAsmRegClass::X86(X86InlineAsmRegClass::reg) => "r", InlineAsmRegClass::X86(X86InlineAsmRegClass::reg_abcd) => "Q", InlineAsmRegClass::X86(X86InlineAsmRegClass::reg_byte) => "q", InlineAsmRegClass::X86(X86InlineAsmRegClass::xmm_reg) | InlineAsmRegClass::X86(X86InlineAsmRegClass::ymm_reg) => "x", InlineAsmRegClass::X86(X86InlineAsmRegClass::zmm_reg) => "v", InlineAsmRegClass::X86(X86InlineAsmRegClass::kreg) => unimplemented!(), InlineAsmRegClass::Wasm(WasmInlineAsmRegClass::local) => unimplemented!(), InlineAsmRegClass::X86( X86InlineAsmRegClass::x87_reg | X86InlineAsmRegClass::mmx_reg, ) => unreachable!("clobber-only"), InlineAsmRegClass::SpirV(SpirVInlineAsmRegClass::reg) => { bug!("GCC backend does not support SPIR-V") } InlineAsmRegClass::S390x(S390xInlineAsmRegClass::reg) => unimplemented!(), InlineAsmRegClass::S390x(S390xInlineAsmRegClass::freg) => unimplemented!(), InlineAsmRegClass::Err => unreachable!(), } }; ConstraintOrRegister::Constraint(constraint) } /// Type to use for outputs that are discarded. It doesn't really matter what /// the type is, as long as it is valid for the constraint code. fn dummy_output_type<'gcc, 'tcx>(cx: &CodegenCx<'gcc, 'tcx>, reg: InlineAsmRegClass) -> Type<'gcc> { match reg { InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::reg) => cx.type_i32(), InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::preg) => unimplemented!(), InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg) | InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg_low16) => { unimplemented!() } InlineAsmRegClass::Arm(ArmInlineAsmRegClass::reg) | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::reg_thumb) => cx.type_i32(), InlineAsmRegClass::Arm(ArmInlineAsmRegClass::sreg) | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::sreg_low16) => cx.type_f32(), InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg) | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg_low16) | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg_low8) => cx.type_f64(), InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg) | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg_low8) | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg_low4) => { unimplemented!() } InlineAsmRegClass::Bpf(_) => unimplemented!(), InlineAsmRegClass::Hexagon(HexagonInlineAsmRegClass::reg) => cx.type_i32(), InlineAsmRegClass::Mips(MipsInlineAsmRegClass::reg) => cx.type_i32(), InlineAsmRegClass::Mips(MipsInlineAsmRegClass::freg) => cx.type_f32(), InlineAsmRegClass::Nvptx(NvptxInlineAsmRegClass::reg16) => cx.type_i16(), InlineAsmRegClass::Nvptx(NvptxInlineAsmRegClass::reg32) => cx.type_i32(), InlineAsmRegClass::Nvptx(NvptxInlineAsmRegClass::reg64) => cx.type_i64(), InlineAsmRegClass::PowerPC(PowerPCInlineAsmRegClass::reg) => cx.type_i32(), InlineAsmRegClass::PowerPC(PowerPCInlineAsmRegClass::reg_nonzero) => cx.type_i32(), InlineAsmRegClass::PowerPC(PowerPCInlineAsmRegClass::freg) => cx.type_f64(), InlineAsmRegClass::PowerPC(PowerPCInlineAsmRegClass::cr) | InlineAsmRegClass::PowerPC(PowerPCInlineAsmRegClass::xer) => { unreachable!("clobber-only") }, InlineAsmRegClass::RiscV(RiscVInlineAsmRegClass::reg) => cx.type_i32(), InlineAsmRegClass::RiscV(RiscVInlineAsmRegClass::freg) => cx.type_f32(), InlineAsmRegClass::RiscV(RiscVInlineAsmRegClass::vreg) => cx.type_f32(), InlineAsmRegClass::X86(X86InlineAsmRegClass::reg) | InlineAsmRegClass::X86(X86InlineAsmRegClass::reg_abcd) => cx.type_i32(), InlineAsmRegClass::X86(X86InlineAsmRegClass::reg_byte) => cx.type_i8(), InlineAsmRegClass::X86(X86InlineAsmRegClass::mmx_reg) => unimplemented!(), InlineAsmRegClass::X86(X86InlineAsmRegClass::xmm_reg) | InlineAsmRegClass::X86(X86InlineAsmRegClass::ymm_reg) | InlineAsmRegClass::X86(X86InlineAsmRegClass::zmm_reg) => cx.type_f32(), InlineAsmRegClass::X86(X86InlineAsmRegClass::x87_reg) => unimplemented!(), InlineAsmRegClass::X86(X86InlineAsmRegClass::kreg) => cx.type_i16(), InlineAsmRegClass::Wasm(WasmInlineAsmRegClass::local) => cx.type_i32(), InlineAsmRegClass::SpirV(SpirVInlineAsmRegClass::reg) => { bug!("LLVM backend does not support SPIR-V") }, InlineAsmRegClass::S390x(S390xInlineAsmRegClass::reg) => cx.type_i32(), InlineAsmRegClass::S390x(S390xInlineAsmRegClass::freg) => cx.type_f64(), InlineAsmRegClass::Err => unreachable!(), } } impl<'gcc, 'tcx> AsmMethods for CodegenCx<'gcc, 'tcx> { fn codegen_global_asm(&self, template: &[InlineAsmTemplatePiece], operands: &[GlobalAsmOperandRef], options: InlineAsmOptions, _line_spans: &[Span]) { let asm_arch = self.tcx.sess.asm_arch.unwrap(); // Default to Intel syntax on x86 let intel_syntax = matches!(asm_arch, InlineAsmArch::X86 | InlineAsmArch::X86_64) && !options.contains(InlineAsmOptions::ATT_SYNTAX); // Build the template string let mut template_str = String::new(); for piece in template { match *piece { InlineAsmTemplatePiece::String(ref string) => { for line in string.lines() { // NOTE: gcc does not allow inline comment, so remove them. let line = if let Some(index) = line.rfind("//") { &line[..index] } else { line }; template_str.push_str(line); template_str.push('\n'); } }, InlineAsmTemplatePiece::Placeholder { operand_idx, modifier: _, span: _ } => { match operands[operand_idx] { GlobalAsmOperandRef::Const { ref string } => { // Const operands get injected directly into the // template. Note that we don't need to escape % // here unlike normal inline assembly. template_str.push_str(string); } } } } } let template_str = if intel_syntax { format!("{}\n\t.intel_syntax noprefix", template_str) } else { format!(".att_syntax\n\t{}\n\t.intel_syntax noprefix", template_str) }; // NOTE: seems like gcc will put the asm in the wrong section, so set it to .text manually. let template_str = format!(".pushsection .text\n{}\n.popsection", template_str); self.context.add_top_level_asm(None, &template_str); } } fn modifier_to_gcc(arch: InlineAsmArch, reg: InlineAsmRegClass, modifier: Option) -> Option { match reg { InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::reg) => modifier, InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::preg) => modifier, InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg) | InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg_low16) => { unimplemented!() } InlineAsmRegClass::Arm(ArmInlineAsmRegClass::reg) | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::reg_thumb) => unimplemented!(), InlineAsmRegClass::Arm(ArmInlineAsmRegClass::sreg) | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::sreg_low16) => unimplemented!(), InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg) | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg_low16) | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg_low8) => unimplemented!(), InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg) | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg_low8) | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg_low4) => { unimplemented!() } InlineAsmRegClass::Bpf(_) => unimplemented!(), InlineAsmRegClass::Hexagon(_) => unimplemented!(), InlineAsmRegClass::Mips(_) => unimplemented!(), InlineAsmRegClass::Nvptx(_) => unimplemented!(), InlineAsmRegClass::PowerPC(_) => unimplemented!(), InlineAsmRegClass::RiscV(RiscVInlineAsmRegClass::reg) | InlineAsmRegClass::RiscV(RiscVInlineAsmRegClass::freg) => unimplemented!(), InlineAsmRegClass::RiscV(RiscVInlineAsmRegClass::vreg) => unimplemented!(), InlineAsmRegClass::X86(X86InlineAsmRegClass::reg) | InlineAsmRegClass::X86(X86InlineAsmRegClass::reg_abcd) => match modifier { None => if arch == InlineAsmArch::X86_64 { Some('q') } else { Some('k') }, Some('l') => Some('b'), Some('h') => Some('h'), Some('x') => Some('w'), Some('e') => Some('k'), Some('r') => Some('q'), _ => unreachable!(), }, InlineAsmRegClass::X86(X86InlineAsmRegClass::reg_byte) => None, InlineAsmRegClass::X86(reg @ X86InlineAsmRegClass::xmm_reg) | InlineAsmRegClass::X86(reg @ X86InlineAsmRegClass::ymm_reg) | InlineAsmRegClass::X86(reg @ X86InlineAsmRegClass::zmm_reg) => match (reg, modifier) { (X86InlineAsmRegClass::xmm_reg, None) => Some('x'), (X86InlineAsmRegClass::ymm_reg, None) => Some('t'), (X86InlineAsmRegClass::zmm_reg, None) => Some('g'), (_, Some('x')) => Some('x'), (_, Some('y')) => Some('t'), (_, Some('z')) => Some('g'), _ => unreachable!(), }, InlineAsmRegClass::X86(X86InlineAsmRegClass::kreg) => None, InlineAsmRegClass::X86(X86InlineAsmRegClass::x87_reg | X86InlineAsmRegClass::mmx_reg) => { unreachable!("clobber-only") } InlineAsmRegClass::Wasm(WasmInlineAsmRegClass::local) => unimplemented!(), InlineAsmRegClass::SpirV(SpirVInlineAsmRegClass::reg) => { bug!("LLVM backend does not support SPIR-V") }, InlineAsmRegClass::S390x(S390xInlineAsmRegClass::reg) => unimplemented!(), InlineAsmRegClass::S390x(S390xInlineAsmRegClass::freg) => unimplemented!(), InlineAsmRegClass::Err => unreachable!(), } }