import codemap::span; import std::map::{hashmap, str_hash}; import base::*; import fold::*; import ast_util::respan; import ast::{ident, path, ty, blk_, expr, path_, expr_path, expr_vec, expr_mac, mac_invoc, node_id}; export add_new_extension; fn path_to_ident(pth: @path) -> option { if vec::len(pth.node.idents) == 1u && vec::len(pth.node.types) == 0u { ret some(pth.node.idents[0u]); } ret none; } //a vec of binders might be a little big. type clause = {params: binders, body: @expr}; /* logically, an arb_depth should contain only one kind of matchable */ enum arb_depth { leaf(T), seq(@[arb_depth], span), } enum matchable { match_expr(@expr), match_path(@path), match_ident(ast::spanned), match_ty(@ty), match_block(ast::blk), match_exact, /* don't bind anything, just verify the AST traversal */ } /* for when given an incompatible bit of AST */ fn match_error(cx: ext_ctxt, m: matchable, expected: str) -> ! { alt m { match_expr(x) { cx.span_fatal(x.span, "this argument is an expr, expected " + expected); } match_path(x) { cx.span_fatal(x.span, "this argument is a path, expected " + expected); } match_ident(x) { cx.span_fatal(x.span, "this argument is an ident, expected " + expected); } match_ty(x) { cx.span_fatal(x.span, "this argument is a type, expected " + expected); } match_block(x) { cx.span_fatal(x.span, "this argument is a block, expected " + expected); } match_exact { cx.bug("what is a match_exact doing in a bindings?"); } } } // We can't make all the matchables in a match_result the same type because // idents can be paths, which can be exprs. // If we want better match failure error messages (like in Fortifying Syntax), // we'll want to return something indicating amount of progress and location // of failure instead of `none`. type match_result = option>; type selector = fn@(matchable) -> match_result; fn elts_to_ell(cx: ext_ctxt, elts: [@expr]) -> {pre: [@expr], rep: option<@expr>, post: [@expr]} { let mut idx: uint = 0u; let mut res = none; for elts.each {|elt| alt elt.node { expr_mac(m) { alt m.node { ast::mac_ellipsis { if res != none { cx.span_fatal(m.span, "only one ellipsis allowed"); } res = some({pre: vec::slice(elts, 0u, idx - 1u), rep: some(elts[idx - 1u]), post: vec::slice(elts, idx + 1u, vec::len(elts))}); } _ { } } } _ { } } idx += 1u; } ret alt res { some(val) { val } none { {pre: elts, rep: none, post: []} } } } fn option_flatten_map(f: fn@(T) -> option, v: [T]) -> option<[U]> { let mut res = []; for v.each {|elem| alt f(elem) { none { ret none; } some(fv) { res += [fv]; } } } ret some(res); } fn a_d_map(ad: arb_depth, f: selector) -> match_result { alt ad { leaf(x) { ret f(x); } seq(ads, span) { alt option_flatten_map(bind a_d_map(_, f), *ads) { none { ret none; } some(ts) { ret some(seq(@ts, span)); } } } } } fn compose_sels(s1: selector, s2: selector) -> selector { fn scomp(s1: selector, s2: selector, m: matchable) -> match_result { ret alt s1(m) { none { none } some(matches) { a_d_map(matches, s2) } } } ret bind scomp(s1, s2, _); } type binders = {real_binders: hashmap, mut literal_ast_matchers: [selector]}; type bindings = hashmap>; fn acumm_bindings(_cx: ext_ctxt, _b_dest: bindings, _b_src: bindings) { } /* these three functions are the big moving parts */ /* create the selectors needed to bind and verify the pattern */ fn pattern_to_selectors(cx: ext_ctxt, e: @expr) -> binders { let res: binders = {real_binders: str_hash::(), mut literal_ast_matchers: []}; //this oughta return binders instead, but macro args are a sequence of //expressions, rather than a single expression fn trivial_selector(m: matchable) -> match_result { ret some(leaf(m)); } p_t_s_rec(cx, match_expr(e), trivial_selector, res); ret res; } /* use the selectors on the actual arguments to the macro to extract bindings. Most of the work is done in p_t_s, which generates the selectors. */ fn use_selectors_to_bind(b: binders, e: @expr) -> option { let res = str_hash::>(); //need to do this first, to check vec lengths. for b.literal_ast_matchers.each {|sel| alt sel(match_expr(e)) { none { ret none; } _ { } } } let mut never_mind: bool = false; b.real_binders.items {|key, val| alt val(match_expr(e)) { none { never_mind = true; } some(mtc) { res.insert(key, mtc); } } }; //HACK: `ret` doesn't work in `for each` if never_mind { ret none; } ret some(res); } /* use the bindings on the body to generate the expanded code */ fn transcribe(cx: ext_ctxt, b: bindings, body: @expr) -> @expr { let idx_path: @mut [uint] = @mut []; fn new_id(_old: node_id, cx: ext_ctxt) -> node_id { ret cx.next_id(); } fn new_span(cx: ext_ctxt, sp: span) -> span { /* this discards information in the case of macro-defining macros */ ret {lo: sp.lo, hi: sp.hi, expn_info: cx.backtrace()}; } let afp = default_ast_fold(); let f_pre = {fold_ident: bind transcribe_ident(cx, b, idx_path, _, _), fold_path: bind transcribe_path(cx, b, idx_path, _, _, _), fold_expr: bind transcribe_expr(cx, b, idx_path, _, _, _, afp.fold_expr), fold_ty: bind transcribe_type(cx, b, idx_path, _, _, _, afp.fold_ty), fold_block: bind transcribe_block(cx, b, idx_path, _, _, _, afp.fold_block), map_exprs: bind transcribe_exprs(cx, b, idx_path, _, _), new_id: bind new_id(_, cx) with *afp}; let f = make_fold(f_pre); let result = f.fold_expr(body); ret result; } /* helper: descend into a matcher */ fn follow(m: arb_depth, idx_path: @mut [uint]) -> arb_depth { let mut res: arb_depth = m; for vec::each(*idx_path) {|idx| alt res { leaf(_) { ret res;/* end of the line */ } seq(new_ms, _) { res = new_ms[idx]; } } } ret res; } fn follow_for_trans(cx: ext_ctxt, mmaybe: option>, idx_path: @mut [uint]) -> option { alt mmaybe { none { ret none } some(m) { ret alt follow(m, idx_path) { seq(_, sp) { cx.span_fatal(sp, "syntax matched under ... but not " + "used that way.") } leaf(m) { ret some(m) } } } } } /* helper for transcribe_exprs: what vars from `b` occur in `e`? */ fn free_vars(b: bindings, e: @expr, it: fn(ident)) { let idents: hashmap = str_hash::<()>(); fn mark_ident(&&i: ident, _fld: ast_fold, b: bindings, idents: hashmap) -> ident { if b.contains_key(i) { idents.insert(i, ()); } ret i; } // using fold is a hack: we want visit, but it doesn't hit idents ) : // solve this with macros let f_pre = {fold_ident: bind mark_ident(_, _, b, idents) with *default_ast_fold()}; let f = make_fold(f_pre); f.fold_expr(e); // ignore result idents.keys {|x| it(x); }; } /* handle sequences (anywhere in the AST) of exprs, either real or ...ed */ fn transcribe_exprs(cx: ext_ctxt, b: bindings, idx_path: @mut [uint], recur: fn@(&&@expr) -> @expr, exprs: [@expr]) -> [@expr] { alt elts_to_ell(cx, exprs) { {pre: pre, rep: repeat_me_maybe, post: post} { let mut res = vec::map(pre, recur); alt repeat_me_maybe { none { } some(repeat_me) { let mut repeat: option<{rep_count: uint, name: ident}> = none; /* we need to walk over all the free vars in lockstep, except for the leaves, which are just duplicated */ free_vars(b, repeat_me) {|fv| let cur_pos = follow(b.get(fv), idx_path); alt cur_pos { leaf(_) { } seq(ms, _) { alt repeat { none { repeat = some({rep_count: vec::len(*ms), name: fv}); } some({rep_count: old_len, name: old_name}) { let len = vec::len(*ms); if old_len != len { let msg = #fmt["'%s' occurs %u times, but ", fv, len] + #fmt["'%s' occurs %u times", old_name, old_len]; cx.span_fatal(repeat_me.span, msg); } } } } } }; alt repeat { none { cx.span_fatal(repeat_me.span, "'...' surrounds an expression without any" + " repeating syntax variables"); } some({rep_count: rc, _}) { /* Whew, we now know how how many times to repeat */ let mut idx: uint = 0u; while idx < rc { *idx_path += [idx]; res += [recur(repeat_me)]; // whew! vec::pop(*idx_path); idx += 1u; } } } } } res += vec::map(post, recur); ret res; } } } // substitute, in a position that's required to be an ident fn transcribe_ident(cx: ext_ctxt, b: bindings, idx_path: @mut [uint], &&i: ident, _fld: ast_fold) -> ident { ret alt follow_for_trans(cx, b.find(i), idx_path) { some(match_ident(a_id)) { a_id.node } some(m) { match_error(cx, m, "an identifier") } none { i } } } fn transcribe_path(cx: ext_ctxt, b: bindings, idx_path: @mut [uint], p: path_, s:span, _fld: ast_fold) -> (path_, span) { // Don't substitute into qualified names. if vec::len(p.types) > 0u || vec::len(p.idents) != 1u { ret (p, s); } ret alt follow_for_trans(cx, b.find(p.idents[0]), idx_path) { some(match_ident(id)) { ({global: false, idents: [id.node], types: []}, id.span) } some(match_path(a_pth)) { (a_pth.node, a_pth.span) } some(m) { match_error(cx, m, "a path") } none { (p, s) } } } fn transcribe_expr(cx: ext_ctxt, b: bindings, idx_path: @mut [uint], e: ast::expr_, s: span, fld: ast_fold, orig: fn@(ast::expr_, span, ast_fold)->(ast::expr_, span)) -> (ast::expr_, span) { ret alt e { expr_path(p) { // Don't substitute into qualified names. if vec::len(p.node.types) > 0u || vec::len(p.node.idents) != 1u { (e, s); } alt follow_for_trans(cx, b.find(p.node.idents[0]), idx_path) { some(match_ident(id)) { (expr_path(@respan(id.span, {global: false, idents: [id.node], types: []})), id.span) } some(match_path(a_pth)) { (expr_path(a_pth), s) } some(match_expr(a_exp)) { (a_exp.node, a_exp.span) } some(m) { match_error(cx, m, "an expression") } none { orig(e, s, fld) } } } _ { orig(e, s, fld) } } } fn transcribe_type(cx: ext_ctxt, b: bindings, idx_path: @mut [uint], t: ast::ty_, s: span, fld: ast_fold, orig: fn@(ast::ty_, span, ast_fold) -> (ast::ty_, span)) -> (ast::ty_, span) { ret alt t { ast::ty_path(pth, _) { alt path_to_ident(pth) { some(id) { alt follow_for_trans(cx, b.find(id), idx_path) { some(match_ty(ty)) { (ty.node, ty.span) } some(m) { match_error(cx, m, "a type") } none { orig(t, s, fld) } } } none { orig(t, s, fld) } } } _ { orig(t, s, fld) } } } /* for parsing reasons, syntax variables bound to blocks must be used like `{v}` */ fn transcribe_block(cx: ext_ctxt, b: bindings, idx_path: @mut [uint], blk: blk_, s: span, fld: ast_fold, orig: fn@(blk_, span, ast_fold) -> (blk_, span)) -> (blk_, span) { ret alt block_to_ident(blk) { some(id) { alt follow_for_trans(cx, b.find(id), idx_path) { some(match_block(new_blk)) { (new_blk.node, new_blk.span) } // possibly allow promotion of ident/path/expr to blocks? some(m) { match_error(cx, m, "a block") } none { orig(blk, s, fld) } } } none { orig(blk, s, fld) } } } /* traverse the pattern, building instructions on how to bind the actual argument. ps accumulates instructions on navigating the tree.*/ fn p_t_s_rec(cx: ext_ctxt, m: matchable, s: selector, b: binders) { //it might be possible to traverse only exprs, not matchables alt m { match_expr(e) { alt e.node { expr_path(p_pth) { p_t_s_r_path(cx, p_pth, s, b); } expr_vec(p_elts, _) { alt elts_to_ell(cx, p_elts) { {pre: pre, rep: some(repeat_me), post: post} { p_t_s_r_length(cx, vec::len(pre) + vec::len(post), true, s, b); if vec::len(pre) > 0u { p_t_s_r_actual_vector(cx, pre, true, s, b); } p_t_s_r_ellipses(cx, repeat_me, vec::len(pre), s, b); if vec::len(post) > 0u { cx.span_unimpl(e.span, "matching after `...` not yet supported"); } } {pre: pre, rep: none, post: post} { if post != [] { cx.bug("elts_to_ell provided an invalid result"); } p_t_s_r_length(cx, vec::len(pre), false, s, b); p_t_s_r_actual_vector(cx, pre, false, s, b); } } } /* FIXME: handle embedded types and blocks, at least */ expr_mac(mac) { p_t_s_r_mac(cx, mac, s, b); } _ { fn select(cx: ext_ctxt, m: matchable, pat: @expr) -> match_result { ret alt m { match_expr(e) { if e == pat { some(leaf(match_exact)) } else { none } } _ { cx.bug("broken traversal in p_t_s_r") } } } b.literal_ast_matchers += [bind select(cx, _, e)]; } } } _ { cx.bug("undocumented invariant in p_t_s_rec"); } } } /* make a match more precise */ fn specialize_match(m: matchable) -> matchable { ret alt m { match_expr(e) { alt e.node { expr_path(pth) { alt path_to_ident(pth) { some(id) { match_ident(respan(pth.span, id)) } none { match_path(pth) } } } _ { m } } } _ { m } } } /* pattern_to_selectors helper functions */ fn p_t_s_r_path(cx: ext_ctxt, p: @path, s: selector, b: binders) { alt path_to_ident(p) { some(p_id) { fn select(cx: ext_ctxt, m: matchable) -> match_result { ret alt m { match_expr(e) { some(leaf(specialize_match(m))) } _ { cx.bug("broken traversal in p_t_s_r") } } } if b.real_binders.contains_key(p_id) { cx.span_fatal(p.span, "duplicate binding identifier"); } b.real_binders.insert(p_id, compose_sels(s, bind select(cx, _))); } none { } } } fn block_to_ident(blk: blk_) -> option { if vec::len(blk.stmts) != 0u { ret none; } ret alt blk.expr { some(expr) { alt expr.node { expr_path(pth) { path_to_ident(pth) } _ { none } } } none { none } } } fn p_t_s_r_mac(cx: ext_ctxt, mac: ast::mac, s: selector, b: binders) { fn select_pt_1(cx: ext_ctxt, m: matchable, fn_m: fn(ast::mac) -> match_result) -> match_result { ret alt m { match_expr(e) { alt e.node { expr_mac(mac) { fn_m(mac) } _ { none } } } _ { cx.bug("broken traversal in p_t_s_r") } } } fn no_des(cx: ext_ctxt, sp: span, syn: str) -> ! { cx.span_fatal(sp, "destructuring " + syn + " is not yet supported"); } alt mac.node { ast::mac_ellipsis { cx.span_fatal(mac.span, "misused `...`"); } ast::mac_invoc(_, _, _) { no_des(cx, mac.span, "macro calls"); } ast::mac_embed_type(ty) { alt ty.node { ast::ty_path(pth, _) { alt path_to_ident(pth) { some(id) { /* look for an embedded type */ fn select_pt_2(m: ast::mac) -> match_result { ret alt m.node { ast::mac_embed_type(t) { some(leaf(match_ty(t))) } _ { none } } } let final_step = bind select_pt_1(cx, _, select_pt_2); b.real_binders.insert(id, compose_sels(s, final_step)); } none { no_des(cx, pth.span, "under `#<>`"); } } } _ { no_des(cx, ty.span, "under `#<>`"); } } } ast::mac_embed_block(blk) { alt block_to_ident(blk.node) { some(id) { fn select_pt_2(m: ast::mac) -> match_result { ret alt m.node { ast::mac_embed_block(blk) { some(leaf(match_block(blk))) } _ { none } } } let final_step = bind select_pt_1(cx, _, select_pt_2); b.real_binders.insert(id, compose_sels(s, final_step)); } none { no_des(cx, blk.span, "under `#{}`"); } } } ast::mac_aq(_,_) { no_des(cx, mac.span, "antiquotes"); } ast::mac_var(_) { no_des(cx, mac.span, "antiquote variables"); } } } fn p_t_s_r_ellipses(cx: ext_ctxt, repeat_me: @expr, offset: uint, s: selector, b: binders) { fn select(cx: ext_ctxt, repeat_me: @expr, offset: uint, m: matchable) -> match_result { ret alt m { match_expr(e) { alt e.node { expr_vec(arg_elts, _) { let mut elts = []; let mut idx = offset; while idx < vec::len(arg_elts) { elts += [leaf(match_expr(arg_elts[idx]))]; idx += 1u; } // using repeat_me.span is a little wacky, but the // error we want to report is one in the macro def some(seq(@elts, repeat_me.span)) } _ { none } } } _ { cx.bug("broken traversal in p_t_s_r") } } } p_t_s_rec(cx, match_expr(repeat_me), compose_sels(s, bind select(cx, repeat_me, offset, _)), b); } fn p_t_s_r_length(cx: ext_ctxt, len: uint, at_least: bool, s: selector, b: binders) { fn len_select(_cx: ext_ctxt, m: matchable, at_least: bool, len: uint) -> match_result { ret alt m { match_expr(e) { alt e.node { expr_vec(arg_elts, _) { let actual_len = vec::len(arg_elts); if at_least && actual_len >= len || actual_len == len { some(leaf(match_exact)) } else { none } } _ { none } } } _ { none } } } b.literal_ast_matchers += [compose_sels(s, bind len_select(cx, _, at_least, len))]; } fn p_t_s_r_actual_vector(cx: ext_ctxt, elts: [@expr], _repeat_after: bool, s: selector, b: binders) { let mut idx: uint = 0u; while idx < vec::len(elts) { fn select(cx: ext_ctxt, m: matchable, idx: uint) -> match_result { ret alt m { match_expr(e) { alt e.node { expr_vec(arg_elts, _) { some(leaf(match_expr(arg_elts[idx]))) } _ { none } } } _ { cx.bug("broken traversal in p_t_s_r") } } } p_t_s_rec(cx, match_expr(elts[idx]), compose_sels(s, bind select(cx, _, idx)), b); idx += 1u; } } fn add_new_extension(cx: ext_ctxt, sp: span, arg: ast::mac_arg, _body: ast::mac_body) -> base::macro_def { let arg = get_mac_arg(cx,sp,arg); let args: [@ast::expr] = alt arg.node { ast::expr_vec(elts, _) { elts } _ { cx.span_fatal(sp, "#macro requires arguments of the form `[...]`.") } }; let mut macro_name: option = none; let mut clauses: [@clause] = []; for args.each {|arg| alt arg.node { expr_vec(elts, mutbl) { if vec::len(elts) != 2u { cx.span_fatal((*arg).span, "extension clause must consist of [" + "macro invocation, expansion body]"); } alt elts[0u].node { expr_mac(mac) { alt mac.node { mac_invoc(pth, invoc_arg, body) { alt path_to_ident(pth) { some(id) { alt macro_name { none { macro_name = some(id); } some(other_id) { if id != other_id { cx.span_fatal(pth.span, "macro name must be " + "consistent"); } } } } none { cx.span_fatal(pth.span, "macro name must not be a path"); } } clauses += [@{params: pattern_to_selectors (cx, get_mac_arg(cx,mac.span,invoc_arg)), body: elts[1u]}]; // FIXME: check duplicates (or just simplify // the macro arg situation) } _ { cx.span_bug(mac.span, "undocumented invariant in \ add_extension"); } } } _ { cx.span_fatal(elts[0u].span, "extension clause must" + " start with a macro invocation."); } } } _ { cx.span_fatal((*arg).span, "extension must be [clause, " + " ...]"); } } } let ext = bind generic_extension(_, _, _, _, clauses); ret {ident: alt macro_name { some(id) { id } none { cx.span_fatal(sp, "macro definition must have " + "at least one clause") } }, ext: normal({expander: ext, span: some(arg.span)})}; fn generic_extension(cx: ext_ctxt, sp: span, arg: ast::mac_arg, _body: ast::mac_body, clauses: [@clause]) -> @expr { let arg = get_mac_arg(cx,sp,arg); for clauses.each {|c| alt use_selectors_to_bind(c.params, arg) { some(bindings) { ret transcribe(cx, bindings, c.body); } none { cont; } } } cx.span_fatal(sp, "no clauses match macro invocation"); } } // // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // End: //