#include "rust_internal.h" #include "rust_cc.h" #ifndef __WIN32__ #include #endif #include #include #include #include #include "globals.h" #include "rust_upcall.h" // Tasks rust_task::rust_task(rust_task_thread *thread, rust_task_state state, rust_task *spawner, const char *name, size_t init_stack_sz) : ref_count(1), id(0), notify_enabled(false), stk(NULL), runtime_sp(0), sched(thread->sched), thread(thread), kernel(thread->kernel), name(name), list_index(-1), rendezvous_ptr(0), local_region(&thread->srv->local_region), boxed(&local_region), unwinding(false), propagate_failure(true), cc_counter(0), total_stack_sz(0), state(state), cond(NULL), cond_name("none"), killed(false), reentered_rust_stack(false), c_stack(NULL), next_c_sp(0), next_rust_sp(0), supervisor(spawner) { LOGPTR(thread, "new task", (uintptr_t)this); DLOG(thread, task, "sizeof(task) = %d (0x%x)", sizeof *this, sizeof *this); new_stack(init_stack_sz); if (supervisor) { supervisor->ref(); } } // NB: This does not always run on the task's scheduler thread void rust_task::delete_this() { DLOG(thread, task, "~rust_task %s @0x%" PRIxPTR ", refcnt=%d", name, (uintptr_t)this, ref_count); // FIXME: We should do this when the task exits, not in the destructor { scoped_lock with(supervisor_lock); if (supervisor) { supervisor->deref(); } } /* FIXME: tighten this up, there are some more assertions that hold at task-lifecycle events. */ I(thread, ref_count == 0); // || // (ref_count == 1 && this == sched->root_task)); thread->release_task(this); } struct spawn_args { rust_task *task; spawn_fn f; rust_opaque_box *envptr; void *argptr; }; struct cleanup_args { spawn_args *spargs; bool threw_exception; }; void cleanup_task(cleanup_args *args) { spawn_args *a = args->spargs; bool threw_exception = args->threw_exception; rust_task *task = a->task; cc::do_final_cc(task); task->die(); { scoped_lock with(task->kill_lock); if (task->killed && !threw_exception) { LOG(task, task, "Task killed during termination"); threw_exception = true; } } task->notify(!threw_exception); if (threw_exception) { #ifndef __WIN32__ task->conclude_failure(); #else A(task->thread, false, "Shouldn't happen"); #endif } } // This runs on the Rust stack void task_start_wrapper(spawn_args *a) { rust_task *task = a->task; bool threw_exception = false; try { // The first argument is the return pointer; as the task fn // must have void return type, we can safely pass 0. a->f(0, a->envptr, a->argptr); } catch (rust_task *ex) { A(task->thread, ex == task, "Expected this task to be thrown for unwinding"); threw_exception = true; if (task->c_stack) { task->return_c_stack(); } } // We should have returned any C stack by now I(task->thread, task->c_stack == NULL); rust_opaque_box* env = a->envptr; if(env) { // free the environment (which should be a unique closure). const type_desc *td = env->td; td->drop_glue(NULL, NULL, td->first_param, box_body(env)); upcall_shared_free(env); } // The cleanup work needs lots of stack cleanup_args ca = {a, threw_exception}; task->call_on_c_stack(&ca, (void*)cleanup_task); task->ctx.next->swap(task->ctx); } void rust_task::start(spawn_fn spawnee_fn, rust_opaque_box *envptr, void *argptr) { LOG(this, task, "starting task from fn 0x%" PRIxPTR " with env 0x%" PRIxPTR " and arg 0x%" PRIxPTR, spawnee_fn, envptr, argptr); I(thread, stk->data != NULL); char *sp = (char *)stk->end; sp -= sizeof(spawn_args); spawn_args *a = (spawn_args *)sp; a->task = this; a->envptr = envptr; a->argptr = argptr; a->f = spawnee_fn; ctx.call((void *)task_start_wrapper, a, sp); this->start(); } void rust_task::start() { transition(task_state_newborn, task_state_running, NULL, "none"); } bool rust_task::must_fail_from_being_killed() { scoped_lock with(kill_lock); return must_fail_from_being_killed_unlocked(); } bool rust_task::must_fail_from_being_killed_unlocked() { return killed && !reentered_rust_stack; } // Only run this on the rust stack void rust_task::yield(bool *killed) { if (must_fail_from_being_killed()) { I(thread, !blocked()); *killed = true; } // Return to the scheduler. ctx.next->swap(ctx); if (must_fail_from_being_killed()) { *killed = true; } } void rust_task::kill() { scoped_lock with(kill_lock); if (dead()) { // Task is already dead, can't kill what's already dead. fail_parent(); } // Note the distinction here: kill() is when you're in an upcall // from task A and want to force-fail task B, you do B->kill(). // If you want to fail yourself you do self->fail(). LOG(this, task, "killing task %s @0x%" PRIxPTR, name, this); // When the task next goes to yield or resume it will fail killed = true; // Unblock the task so it can unwind. if (blocked()) { wakeup(cond); } LOG(this, task, "preparing to unwind task: 0x%" PRIxPTR, this); } extern "C" CDECL bool rust_task_is_unwinding(rust_task *rt) { return rt->unwinding; } void rust_task::fail() { // See note in ::kill() regarding who should call this. DLOG(thread, task, "task %s @0x%" PRIxPTR " failing", name, this); backtrace(); unwinding = true; #ifndef __WIN32__ throw this; #else die(); conclude_failure(); // FIXME: Need unwinding on windows. This will end up aborting thread->fail(); #endif } void rust_task::conclude_failure() { fail_parent(); } void rust_task::fail_parent() { scoped_lock with(supervisor_lock); if (supervisor) { DLOG(thread, task, "task %s @0x%" PRIxPTR " propagating failure to supervisor %s @0x%" PRIxPTR, name, this, supervisor->name, supervisor); supervisor->kill(); } if (NULL == supervisor && propagate_failure) thread->fail(); } void rust_task::unsupervise() { scoped_lock with(supervisor_lock); if (supervisor) { DLOG(thread, task, "task %s @0x%" PRIxPTR " disconnecting from supervisor %s @0x%" PRIxPTR, name, this, supervisor->name, supervisor); supervisor->deref(); } supervisor = NULL; propagate_failure = false; } frame_glue_fns* rust_task::get_frame_glue_fns(uintptr_t fp) { fp -= sizeof(uintptr_t); return *((frame_glue_fns**) fp); } bool rust_task::running() { scoped_lock with(state_lock); return state == task_state_running; } bool rust_task::blocked() { scoped_lock with(state_lock); return state == task_state_blocked; } bool rust_task::blocked_on(rust_cond *on) { scoped_lock with(state_lock); return cond == on; } bool rust_task::dead() { scoped_lock with(state_lock); return state == task_state_dead; } void * rust_task::malloc(size_t sz, const char *tag, type_desc *td) { return local_region.malloc(sz, tag); } void * rust_task::realloc(void *data, size_t sz) { return local_region.realloc(data, sz); } void rust_task::free(void *p) { local_region.free(p); } void rust_task::transition(rust_task_state src, rust_task_state dst, rust_cond *cond, const char* cond_name) { thread->transition(this, src, dst, cond, cond_name); } void rust_task::set_state(rust_task_state state, rust_cond *cond, const char* cond_name) { scoped_lock with(state_lock); this->state = state; this->cond = cond; this->cond_name = cond_name; } bool rust_task::block(rust_cond *on, const char* name) { scoped_lock with(kill_lock); if (must_fail_from_being_killed_unlocked()) { // We're already going to die. Don't block. Tell the task to fail return false; } LOG(this, task, "Blocking on 0x%" PRIxPTR ", cond: 0x%" PRIxPTR, (uintptr_t) on, (uintptr_t) cond); A(thread, cond == NULL, "Cannot block an already blocked task."); A(thread, on != NULL, "Cannot block on a NULL object."); transition(task_state_running, task_state_blocked, on, name); return true; } void rust_task::wakeup(rust_cond *from) { A(thread, cond != NULL, "Cannot wake up unblocked task."); LOG(this, task, "Blocked on 0x%" PRIxPTR " woken up on 0x%" PRIxPTR, (uintptr_t) cond, (uintptr_t) from); A(thread, cond == from, "Cannot wake up blocked task on wrong condition."); transition(task_state_blocked, task_state_running, NULL, "none"); } void rust_task::die() { transition(task_state_running, task_state_dead, NULL, "none"); } void rust_task::backtrace() { if (!log_rt_backtrace) return; #ifndef __WIN32__ void *call_stack[256]; int nframes = ::backtrace(call_stack, 256); backtrace_symbols_fd(call_stack + 1, nframes - 1, 2); #endif } void * rust_task::calloc(size_t size, const char *tag) { return local_region.calloc(size, tag); } void rust_task::notify(bool success) { // FIXME (1078) Do this in rust code if(notify_enabled) { rust_port *target_port = kernel->get_port_by_id(notify_port); if(target_port) { task_notification msg; msg.id = id; msg.result = !success ? tr_failure : tr_success; target_port->send(&msg); target_port->deref(); } } } size_t rust_task::get_next_stack_size(size_t min, size_t current, size_t requested) { LOG(this, mem, "calculating new stack size for 0x%" PRIxPTR, this); LOG(this, mem, "min: %" PRIdPTR " current: %" PRIdPTR " requested: %" PRIdPTR, min, current, requested); // Allocate at least enough to accomodate the next frame size_t sz = std::max(min, requested); // And double the stack size each allocation const size_t max = 1024 * 1024; size_t next = std::min(max, current * 2); sz = std::max(sz, next); LOG(this, mem, "next stack size: %" PRIdPTR, sz); I(thread, requested <= sz); return sz; } void rust_task::free_stack(stk_seg *stk) { LOGPTR(thread, "freeing stk segment", (uintptr_t)stk); total_stack_sz -= user_stack_size(stk); destroy_stack(&local_region, stk); } void new_stack_slow(new_stack_args *args) { args->task->new_stack(args->requested_sz); } void rust_task::new_stack(size_t requested_sz) { LOG(this, mem, "creating new stack for task %" PRIxPTR, this); if (stk) { ::check_stack_canary(stk); } // The minimum stack size, in bytes, of a Rust stack, excluding red zone size_t min_sz = thread->min_stack_size; // Try to reuse an existing stack segment while (stk != NULL && stk->next != NULL) { size_t next_sz = user_stack_size(stk->next); if (min_sz <= next_sz && requested_sz <= next_sz) { LOG(this, mem, "reusing existing stack"); stk = stk->next; return; } else { LOG(this, mem, "existing stack is not big enough"); stk_seg *new_next = stk->next->next; free_stack(stk->next); stk->next = new_next; if (new_next) { new_next->prev = stk; } } } // The size of the current stack segment, excluding red zone size_t current_sz = 0; if (stk != NULL) { current_sz = user_stack_size(stk); } // The calculated size of the new stack, excluding red zone size_t rust_stk_sz = get_next_stack_size(min_sz, current_sz, requested_sz); if (total_stack_sz + rust_stk_sz > thread->env->max_stack_size) { LOG_ERR(this, task, "task %" PRIxPTR " ran out of stack", this); fail(); } size_t sz = rust_stk_sz + RED_ZONE_SIZE; stk_seg *new_stk = create_stack(&local_region, sz); LOGPTR(thread, "new stk", (uintptr_t)new_stk); new_stk->next = NULL; new_stk->prev = stk; if (stk) { stk->next = new_stk; } LOGPTR(thread, "stk end", new_stk->end); stk = new_stk; total_stack_sz += user_stack_size(new_stk); } void rust_task::cleanup_after_turn() { // Delete any spare stack segments that were left // behind by calls to prev_stack I(thread, stk); while (stk->next) { stk_seg *new_next = stk->next->next; free_stack(stk->next); stk->next = new_next; } } static bool sp_in_stk_seg(uintptr_t sp, stk_seg *stk) { // Not positive these bounds for sp are correct. I think that the first // possible value for esp on a new stack is stk->end, which points to the // address before the first value to be pushed onto a new stack. The last // possible address we can push data to is stk->data. Regardless, there's // so much slop at either end that we should never hit one of these // boundaries. return (uintptr_t)stk->data <= sp && sp <= stk->end; } struct reset_args { rust_task *task; uintptr_t sp; }; void reset_stack_limit_on_c_stack(reset_args *args) { rust_task *task = args->task; uintptr_t sp = args->sp; while (!sp_in_stk_seg(sp, task->stk)) { task->stk = task->stk->prev; A(task->thread, task->stk != NULL, "Failed to find the current stack"); } task->record_stack_limit(); } /* Called by landing pads during unwinding to figure out which stack segment we are currently running on and record the stack limit (which was not restored when unwinding through __morestack). */ void rust_task::reset_stack_limit() { I(thread, on_rust_stack()); uintptr_t sp = get_sp(); // Have to do the rest on the C stack because it involves // freeing stack segments, logging, etc. // FIXME: This probably doesn't need to happen on the C // stack now reset_args ra = {this, sp}; call_on_c_stack(&ra, (void*)reset_stack_limit_on_c_stack); } void rust_task::check_stack_canary() { ::check_stack_canary(stk); } void rust_task::delete_all_stacks() { I(thread, !on_rust_stack()); // Delete all the stacks. There may be more than one if the task failed // and no landing pads stopped to clean up. I(thread, stk->next == NULL); while (stk != NULL) { stk_seg *prev = stk->prev; free_stack(stk); stk = prev; } } void rust_task::config_notify(rust_port_id port) { notify_enabled = true; notify_port = port; } /* Returns true if we're currently running on the Rust stack */ bool rust_task::on_rust_stack() { if (stk == NULL) { // This only happens during construction return false; } uintptr_t sp = get_sp(); bool in_first_segment = sp_in_stk_seg(sp, stk); if (in_first_segment) { return true; } else if (stk->prev != NULL) { // This happens only when calling the upcall to delete // a stack segment bool in_second_segment = sp_in_stk_seg(sp, stk->prev); return in_second_segment; } else { return false; } } // // Local Variables: // mode: C++ // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // End: //