// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. /*! * # Categorization * * The job of the categorization module is to analyze an expression to * determine what kind of memory is used in evaluating it (for example, * where dereferences occur and what kind of pointer is dereferenced; * whether the memory is mutable; etc) * * Categorization effectively transforms all of our expressions into * expressions of the following forms (the actual enum has many more * possibilities, naturally, but they are all variants of these base * forms): * * E = rvalue // some computed rvalue * | x // address of a local variable or argument * | *E // deref of a ptr * | E.comp // access to an interior component * * Imagine a routine ToAddr(Expr) that evaluates an expression and returns an * address where the result is to be found. If Expr is an lvalue, then this * is the address of the lvalue. If Expr is an rvalue, this is the address of * some temporary spot in memory where the result is stored. * * Now, cat_expr() classies the expression Expr and the address A=ToAddr(Expr) * as follows: * * - cat: what kind of expression was this? This is a subset of the * full expression forms which only includes those that we care about * for the purpose of the analysis. * - mutbl: mutability of the address A * - ty: the type of data found at the address A * * The resulting categorization tree differs somewhat from the expressions * themselves. For example, auto-derefs are explicit. Also, an index a[b] is * decomposed into two operations: a derefence to reach the array data and * then an index to jump forward to the relevant item. * * ## By-reference upvars * * One part of the translation which may be non-obvious is that we translate * closure upvars into the dereference of a borrowed pointer; this more closely * resembles the runtime translation. So, for example, if we had: * * let mut x = 3; * let y = 5; * let inc = || x += y; * * Then when we categorize `x` (*within* the closure) we would yield a * result of `*x'`, effectively, where `x'` is a `cat_upvar` reference * tied to `x`. The type of `x'` will be a borrowed pointer. */ #![allow(non_camel_case_types)] use middle::ty; use middle::typeck; use util::ppaux::{ty_to_str, Repr}; use syntax::ast::{MutImmutable, MutMutable}; use syntax::ast; use syntax::codemap::Span; use syntax::print::pprust; use syntax::parse::token; #[deriving(Eq)] pub enum categorization { cat_rvalue(ty::Region), // temporary val, argument is its scope cat_static_item, cat_copied_upvar(CopiedUpvar), // upvar copied into proc env cat_upvar(ty::UpvarId, ty::UpvarBorrow), // by ref upvar from stack closure cat_local(ast::NodeId), // local variable cat_arg(ast::NodeId), // formal argument cat_deref(cmt, uint, PointerKind), // deref of a ptr cat_interior(cmt, InteriorKind), // something interior: field, tuple, etc cat_downcast(cmt), // selects a particular enum variant (*1) cat_discr(cmt, ast::NodeId), // match discriminant (see preserve()) // (*1) downcast is only required if the enum has more than one variant } #[deriving(Eq)] pub struct CopiedUpvar { pub upvar_id: ast::NodeId, pub onceness: ast::Onceness, } // different kinds of pointers: #[deriving(Eq, TotalEq, Hash)] pub enum PointerKind { OwnedPtr, GcPtr, BorrowedPtr(ty::BorrowKind, ty::Region), UnsafePtr(ast::Mutability), } // We use the term "interior" to mean "something reachable from the // base without a pointer dereference", e.g. a field #[deriving(Eq, TotalEq, Hash)] pub enum InteriorKind { InteriorField(FieldName), InteriorElement(ElementKind), } #[deriving(Eq, TotalEq, Hash)] pub enum FieldName { NamedField(ast::Name), PositionalField(uint) } #[deriving(Eq, TotalEq, Hash)] pub enum ElementKind { VecElement, StrElement, OtherElement, } #[deriving(Eq, TotalEq, Hash, Show)] pub enum MutabilityCategory { McImmutable, // Immutable. McDeclared, // Directly declared as mutable. McInherited, // Inherited from the fact that owner is mutable. } // `cmt`: "Category, Mutability, and Type". // // a complete categorization of a value indicating where it originated // and how it is located, as well as the mutability of the memory in // which the value is stored. // // *WARNING* The field `cmt.type` is NOT necessarily the same as the // result of `node_id_to_type(cmt.id)`. This is because the `id` is // always the `id` of the node producing the type; in an expression // like `*x`, the type of this deref node is the deref'd type (`T`), // but in a pattern like `@x`, the `@x` pattern is again a // dereference, but its type is the type *before* the dereference // (`@T`). So use `cmt.type` to find the type of the value in a consistent // fashion. For more details, see the method `cat_pattern` #[deriving(Eq)] pub struct cmt_ { pub id: ast::NodeId, // id of expr/pat producing this value pub span: Span, // span of same expr/pat pub cat: categorization, // categorization of expr pub mutbl: MutabilityCategory, // mutability of expr as lvalue pub ty: ty::t // type of the expr (*see WARNING above*) } pub type cmt = @cmt_; // We pun on *T to mean both actual deref of a ptr as well // as accessing of components: pub enum deref_kind { deref_ptr(PointerKind), deref_interior(InteriorKind), } // Categorizes a derefable type. Note that we include vectors and strings as // derefable (we model an index as the combination of a deref and then a // pointer adjustment). pub fn opt_deref_kind(t: ty::t) -> Option { match ty::get(t).sty { ty::ty_uniq(_) | ty::ty_trait(~ty::TyTrait { store: ty::UniqTraitStore, .. }) | ty::ty_vec(_, ty::VstoreUniq) | ty::ty_str(ty::VstoreUniq) | ty::ty_closure(~ty::ClosureTy {store: ty::UniqTraitStore, ..}) => { Some(deref_ptr(OwnedPtr)) } ty::ty_rptr(r, mt) => { let kind = ty::BorrowKind::from_mutbl(mt.mutbl); Some(deref_ptr(BorrowedPtr(kind, r))) } ty::ty_vec(_, ty::VstoreSlice(r, mutbl)) | ty::ty_trait(~ty::TyTrait { store: ty::RegionTraitStore(r, mutbl), .. }) => { let kind = ty::BorrowKind::from_mutbl(mutbl); Some(deref_ptr(BorrowedPtr(kind, r))) } ty::ty_str(ty::VstoreSlice(r, ())) | ty::ty_closure(~ty::ClosureTy {store: ty::RegionTraitStore(r, _), ..}) => { Some(deref_ptr(BorrowedPtr(ty::ImmBorrow, r))) } ty::ty_box(..) => { Some(deref_ptr(GcPtr)) } ty::ty_ptr(ref mt) => { Some(deref_ptr(UnsafePtr(mt.mutbl))) } ty::ty_enum(..) | ty::ty_struct(..) => { // newtype Some(deref_interior(InteriorField(PositionalField(0)))) } ty::ty_vec(_, ty::VstoreFixed(_)) | ty::ty_str(ty::VstoreFixed(_)) => { Some(deref_interior(InteriorElement(element_kind(t)))) } _ => None } } pub fn deref_kind(tcx: &ty::ctxt, t: ty::t) -> deref_kind { match opt_deref_kind(t) { Some(k) => k, None => { tcx.sess.bug( format!("deref_cat() invoked on non-derefable type {}", ty_to_str(tcx, t))); } } } trait ast_node { fn id(&self) -> ast::NodeId; fn span(&self) -> Span; } impl ast_node for ast::Expr { fn id(&self) -> ast::NodeId { self.id } fn span(&self) -> Span { self.span } } impl ast_node for ast::Pat { fn id(&self) -> ast::NodeId { self.id } fn span(&self) -> Span { self.span } } pub struct MemCategorizationContext { pub typer: TYPER } pub type McResult = Result; /** * The `Typer` trait provides the interface for the mem-categorization * module to the results of the type check. It can be used to query * the type assigned to an expression node, to inquire after adjustments, * and so on. * * This interface is needed because mem-categorization is used from * two places: `regionck` and `borrowck`. `regionck` executes before * type inference is complete, and hence derives types and so on from * intermediate tables. This also implies that type errors can occur, * and hence `node_ty()` and friends return a `Result` type -- any * error will propagate back up through the mem-categorization * routines. * * In the borrow checker, in contrast, type checking is complete and we * know that no errors have occurred, so we simply consult the tcx and we * can be sure that only `Ok` results will occur. */ pub trait Typer { fn tcx<'a>(&'a self) -> &'a ty::ctxt; fn node_ty(&mut self, id: ast::NodeId) -> McResult; fn node_method_ty(&self, method_call: typeck::MethodCall) -> Option; fn adjustment(&mut self, node_id: ast::NodeId) -> Option<@ty::AutoAdjustment>; fn is_method_call(&mut self, id: ast::NodeId) -> bool; fn temporary_scope(&mut self, rvalue_id: ast::NodeId) -> Option; fn upvar_borrow(&mut self, upvar_id: ty::UpvarId) -> ty::UpvarBorrow; } impl MutabilityCategory { pub fn from_mutbl(m: ast::Mutability) -> MutabilityCategory { match m { MutImmutable => McImmutable, MutMutable => McDeclared } } pub fn from_borrow_kind(borrow_kind: ty::BorrowKind) -> MutabilityCategory { match borrow_kind { ty::ImmBorrow => McImmutable, ty::UniqueImmBorrow => McImmutable, ty::MutBorrow => McDeclared, } } pub fn from_pointer_kind(base_mutbl: MutabilityCategory, ptr: PointerKind) -> MutabilityCategory { match ptr { OwnedPtr => { base_mutbl.inherit() } BorrowedPtr(borrow_kind, _) => { MutabilityCategory::from_borrow_kind(borrow_kind) } GcPtr => { McImmutable } UnsafePtr(m) => { MutabilityCategory::from_mutbl(m) } } } pub fn inherit(&self) -> MutabilityCategory { match *self { McImmutable => McImmutable, McDeclared => McInherited, McInherited => McInherited, } } pub fn is_mutable(&self) -> bool { match *self { McImmutable => false, McInherited => true, McDeclared => true, } } pub fn is_immutable(&self) -> bool { match *self { McImmutable => true, McDeclared | McInherited => false } } pub fn to_user_str(&self) -> &'static str { match *self { McDeclared | McInherited => "mutable", McImmutable => "immutable", } } } macro_rules! if_ok( ($inp: expr) => ( match $inp { Ok(v) => { v } Err(e) => { return Err(e); } } ) ) impl MemCategorizationContext { fn tcx<'a>(&'a self) -> &'a ty::ctxt { self.typer.tcx() } fn adjustment(&mut self, id: ast::NodeId) -> Option<@ty::AutoAdjustment> { self.typer.adjustment(id) } fn expr_ty(&mut self, expr: &ast::Expr) -> McResult { self.typer.node_ty(expr.id) } fn expr_ty_adjusted(&mut self, expr: &ast::Expr) -> McResult { let unadjusted_ty = if_ok!(self.expr_ty(expr)); let adjustment = self.adjustment(expr.id); Ok(ty::adjust_ty(self.tcx(), expr.span, expr.id, unadjusted_ty, adjustment, |method_call| self.typer.node_method_ty(method_call))) } fn node_ty(&mut self, id: ast::NodeId) -> McResult { self.typer.node_ty(id) } fn pat_ty(&mut self, pat: @ast::Pat) -> McResult { self.typer.node_ty(pat.id) } pub fn cat_expr(&mut self, expr: &ast::Expr) -> McResult { match self.adjustment(expr.id) { None => { // No adjustments. self.cat_expr_unadjusted(expr) } Some(adjustment) => { match *adjustment { ty::AutoObject(..) => { // Implicity casts a concrete object to trait object // so just patch up the type let expr_ty = if_ok!(self.expr_ty_adjusted(expr)); let expr_cmt = if_ok!(self.cat_expr_unadjusted(expr)); Ok(@cmt_ {ty: expr_ty, ..*expr_cmt}) } ty::AutoAddEnv(..) => { // Convert a bare fn to a closure by adding NULL env. // Result is an rvalue. let expr_ty = if_ok!(self.expr_ty_adjusted(expr)); Ok(self.cat_rvalue_node(expr.id(), expr.span(), expr_ty)) } ty::AutoDerefRef( ty::AutoDerefRef { autoref: Some(_), ..}) => { // Equivalent to &*expr or something similar. // Result is an rvalue. let expr_ty = if_ok!(self.expr_ty_adjusted(expr)); Ok(self.cat_rvalue_node(expr.id(), expr.span(), expr_ty)) } ty::AutoDerefRef( ty::AutoDerefRef { autoref: None, autoderefs: autoderefs}) => { // Equivalent to *expr or something similar. self.cat_expr_autoderefd(expr, autoderefs) } } } } } pub fn cat_expr_autoderefd(&mut self, expr: &ast::Expr, autoderefs: uint) -> McResult { let mut cmt = if_ok!(self.cat_expr_unadjusted(expr)); for deref in range(1u, autoderefs + 1) { cmt = self.cat_deref(expr, cmt, deref); } return Ok(cmt); } pub fn cat_expr_unadjusted(&mut self, expr: &ast::Expr) -> McResult { debug!("cat_expr: id={} expr={}", expr.id, expr.repr(self.tcx())); let expr_ty = if_ok!(self.expr_ty(expr)); match expr.node { ast::ExprUnary(ast::UnDeref, e_base) => { let base_cmt = if_ok!(self.cat_expr(e_base)); Ok(self.cat_deref(expr, base_cmt, 0)) } ast::ExprField(base, f_name, _) => { let base_cmt = if_ok!(self.cat_expr(base)); Ok(self.cat_field(expr, base_cmt, f_name, expr_ty)) } ast::ExprIndex(base, _) => { if self.typer.is_method_call(expr.id) { return Ok(self.cat_rvalue_node(expr.id(), expr.span(), expr_ty)); } let base_cmt = if_ok!(self.cat_expr(base)); Ok(self.cat_index(expr, base_cmt, 0)) } ast::ExprPath(_) => { let def = self.tcx().def_map.borrow().get_copy(&expr.id); self.cat_def(expr.id, expr.span, expr_ty, def) } ast::ExprParen(e) => self.cat_expr_unadjusted(e), ast::ExprAddrOf(..) | ast::ExprCall(..) | ast::ExprAssign(..) | ast::ExprAssignOp(..) | ast::ExprFnBlock(..) | ast::ExprProc(..) | ast::ExprRet(..) | ast::ExprUnary(..) | ast::ExprMethodCall(..) | ast::ExprCast(..) | ast::ExprVstore(..) | ast::ExprVec(..) | ast::ExprTup(..) | ast::ExprIf(..) | ast::ExprBinary(..) | ast::ExprWhile(..) | ast::ExprBlock(..) | ast::ExprLoop(..) | ast::ExprMatch(..) | ast::ExprLit(..) | ast::ExprBreak(..) | ast::ExprMac(..) | ast::ExprAgain(..) | ast::ExprStruct(..) | ast::ExprRepeat(..) | ast::ExprInlineAsm(..) | ast::ExprBox(..) => { Ok(self.cat_rvalue_node(expr.id(), expr.span(), expr_ty)) } ast::ExprForLoop(..) => fail!("non-desugared expr_for_loop") } } pub fn cat_def(&mut self, id: ast::NodeId, span: Span, expr_ty: ty::t, def: ast::Def) -> McResult { debug!("cat_def: id={} expr={}", id, expr_ty.repr(self.tcx())); match def { ast::DefStruct(..) | ast::DefVariant(..) => { Ok(self.cat_rvalue_node(id, span, expr_ty)) } ast::DefFn(..) | ast::DefStaticMethod(..) | ast::DefMod(_) | ast::DefForeignMod(_) | ast::DefStatic(_, false) | ast::DefUse(_) | ast::DefTrait(_) | ast::DefTy(_) | ast::DefPrimTy(_) | ast::DefTyParam(..) | ast::DefTyParamBinder(..) | ast::DefRegion(_) | ast::DefLabel(_) | ast::DefSelfTy(..) | ast::DefMethod(..) => { Ok(@cmt_ { id:id, span:span, cat:cat_static_item, mutbl: McImmutable, ty:expr_ty }) } ast::DefStatic(_, true) => { Ok(@cmt_ { id:id, span:span, cat:cat_static_item, mutbl: McDeclared, ty:expr_ty }) } ast::DefArg(vid, binding_mode) => { // Idea: make this could be rewritten to model by-ref // stuff as `&const` and `&mut`? // m: mutability of the argument let m = match binding_mode { ast::BindByValue(ast::MutMutable) => McDeclared, _ => McImmutable }; Ok(@cmt_ { id: id, span: span, cat: cat_arg(vid), mutbl: m, ty:expr_ty }) } ast::DefUpvar(var_id, _, fn_node_id, _) => { let ty = if_ok!(self.node_ty(fn_node_id)); match ty::get(ty).sty { ty::ty_closure(ref closure_ty) => { // Decide whether to use implicit reference or by copy/move // capture for the upvar. This, combined with the onceness, // determines whether the closure can move out of it. let var_is_refd = match (closure_ty.store, closure_ty.onceness) { // Many-shot stack closures can never move out. (ty::RegionTraitStore(..), ast::Many) => true, // 1-shot stack closures can move out. (ty::RegionTraitStore(..), ast::Once) => false, // Heap closures always capture by copy/move, and can // move out if they are once. (ty::UniqTraitStore, _) => false, }; if var_is_refd { self.cat_upvar(id, span, var_id, fn_node_id) } else { // FIXME #2152 allow mutation of moved upvars Ok(@cmt_ { id:id, span:span, cat:cat_copied_upvar(CopiedUpvar { upvar_id: var_id, onceness: closure_ty.onceness}), mutbl:McImmutable, ty:expr_ty }) } } _ => { self.tcx().sess.span_bug( span, format!("Upvar of non-closure {} - {}", fn_node_id, ty.repr(self.tcx()))); } } } ast::DefLocal(vid, binding_mode) | ast::DefBinding(vid, binding_mode) => { // by-value/by-ref bindings are local variables let m = match binding_mode { ast::BindByValue(ast::MutMutable) => McDeclared, _ => McImmutable }; Ok(@cmt_ { id: id, span: span, cat: cat_local(vid), mutbl: m, ty: expr_ty }) } } } fn cat_upvar(&mut self, id: ast::NodeId, span: Span, var_id: ast::NodeId, fn_node_id: ast::NodeId) -> McResult { /*! * Upvars through a closure are in fact indirect * references. That is, when a closure refers to a * variable from a parent stack frame like `x = 10`, * that is equivalent to `*x_ = 10` where `x_` is a * borrowed pointer (`&mut x`) created when the closure * was created and store in the environment. This * equivalence is expose in the mem-categorization. */ let upvar_id = ty::UpvarId { var_id: var_id, closure_expr_id: fn_node_id }; let upvar_borrow = self.typer.upvar_borrow(upvar_id); let var_ty = if_ok!(self.node_ty(var_id)); // We can't actually represent the types of all upvars // as user-describable types, since upvars support const // and unique-imm borrows! Therefore, we cheat, and just // give err type. Nobody should be inspecting this type anyhow. let upvar_ty = ty::mk_err(); let base_cmt = @cmt_ { id:id, span:span, cat:cat_upvar(upvar_id, upvar_borrow), mutbl:McImmutable, ty:upvar_ty, }; let ptr = BorrowedPtr(upvar_borrow.kind, upvar_borrow.region); let deref_cmt = @cmt_ { id:id, span:span, cat:cat_deref(base_cmt, 0, ptr), mutbl:MutabilityCategory::from_borrow_kind(upvar_borrow.kind), ty:var_ty, }; Ok(deref_cmt) } pub fn cat_rvalue_node(&mut self, id: ast::NodeId, span: Span, expr_ty: ty::t) -> cmt { match self.typer.temporary_scope(id) { Some(scope) => { self.cat_rvalue(id, span, ty::ReScope(scope), expr_ty) } None => { self.cat_rvalue(id, span, ty::ReStatic, expr_ty) } } } pub fn cat_rvalue(&mut self, cmt_id: ast::NodeId, span: Span, temp_scope: ty::Region, expr_ty: ty::t) -> cmt { @cmt_ { id:cmt_id, span:span, cat:cat_rvalue(temp_scope), mutbl:McDeclared, ty:expr_ty } } pub fn cat_field(&mut self, node: &N, base_cmt: cmt, f_name: ast::Ident, f_ty: ty::t) -> cmt { @cmt_ { id: node.id(), span: node.span(), cat: cat_interior(base_cmt, InteriorField(NamedField(f_name.name))), mutbl: base_cmt.mutbl.inherit(), ty: f_ty } } pub fn cat_deref_obj(&mut self, node: &N, base_cmt: cmt) -> cmt { self.cat_deref_common(node, base_cmt, 0, ty::mk_nil()) } fn cat_deref(&mut self, node: &N, base_cmt: cmt, deref_cnt: uint) -> cmt { let method_call = typeck::MethodCall { expr_id: node.id(), autoderef: deref_cnt as u32 }; let method_ty = self.typer.node_method_ty(method_call); debug!("cat_deref: method_call={:?} method_ty={}", method_call, method_ty.map(|ty| ty.repr(self.tcx()))); let base_cmt = match method_ty { Some(method_ty) => { let ref_ty = ty::ty_fn_ret(method_ty); self.cat_rvalue_node(node.id(), node.span(), ref_ty) } None => base_cmt }; match ty::deref(base_cmt.ty, true) { Some(mt) => self.cat_deref_common(node, base_cmt, deref_cnt, mt.ty), None => { self.tcx().sess.span_bug( node.span(), format!("Explicit deref of non-derefable type: {}", base_cmt.ty.repr(self.tcx()))); } } } fn cat_deref_common(&mut self, node: &N, base_cmt: cmt, deref_cnt: uint, deref_ty: ty::t) -> cmt { let (m, cat) = match deref_kind(self.tcx(), base_cmt.ty) { deref_ptr(ptr) => { // for unique ptrs, we inherit mutability from the // owning reference. (MutabilityCategory::from_pointer_kind(base_cmt.mutbl, ptr), cat_deref(base_cmt, deref_cnt, ptr)) } deref_interior(interior) => { (base_cmt.mutbl.inherit(), cat_interior(base_cmt, interior)) } }; @cmt_ { id: node.id(), span: node.span(), cat: cat, mutbl: m, ty: deref_ty } } pub fn cat_index(&mut self, elt: &N, base_cmt: cmt, derefs: uint) -> cmt { //! Creates a cmt for an indexing operation (`[]`); this //! indexing operation may occurs as part of an //! AutoBorrowVec, which when converting a `~[]` to an `&[]` //! effectively takes the address of the 0th element. //! //! One subtle aspect of indexing that may not be //! immediately obvious: for anything other than a fixed-length //! vector, an operation like `x[y]` actually consists of two //! disjoint (from the point of view of borrowck) operations. //! The first is a deref of `x` to create a pointer `p` that points //! at the first element in the array. The second operation is //! an index which adds `y*sizeof(T)` to `p` to obtain the //! pointer to `x[y]`. `cat_index` will produce a resulting //! cmt containing both this deref and the indexing, //! presuming that `base_cmt` is not of fixed-length type. //! //! In the event that a deref is needed, the "deref count" //! is taken from the parameter `derefs`. See the comment //! on the def'n of `root_map_key` in borrowck/mod.rs //! for more details about deref counts; the summary is //! that `derefs` should be 0 for an explicit indexing //! operation and N+1 for an indexing that is part of //! an auto-adjustment, where N is the number of autoderefs //! in that adjustment. //! //! # Parameters //! - `elt`: the AST node being indexed //! - `base_cmt`: the cmt of `elt` //! - `derefs`: the deref number to be used for //! the implicit index deref, if any (see above) let element_ty = match ty::index(base_cmt.ty) { Some(ty) => ty, None => { self.tcx().sess.span_bug( elt.span(), format!("Explicit index of non-index type `{}`", base_cmt.ty.repr(self.tcx()))); } }; return match deref_kind(self.tcx(), base_cmt.ty) { deref_ptr(ptr) => { // for unique ptrs, we inherit mutability from the // owning reference. let m = MutabilityCategory::from_pointer_kind(base_cmt.mutbl, ptr); // the deref is explicit in the resulting cmt let deref_cmt = @cmt_ { id:elt.id(), span:elt.span(), cat:cat_deref(base_cmt, derefs, ptr), mutbl:m, ty:element_ty }; interior(elt, deref_cmt, base_cmt.ty, m.inherit(), element_ty) } deref_interior(_) => { // fixed-length vectors have no deref let m = base_cmt.mutbl.inherit(); interior(elt, base_cmt, base_cmt.ty, m, element_ty) } }; fn interior(elt: &N, of_cmt: cmt, vec_ty: ty::t, mutbl: MutabilityCategory, element_ty: ty::t) -> cmt { @cmt_ { id:elt.id(), span:elt.span(), cat:cat_interior(of_cmt, InteriorElement(element_kind(vec_ty))), mutbl:mutbl, ty:element_ty } } } pub fn cat_slice_pattern(&mut self, vec_cmt: cmt, slice_pat: @ast::Pat) -> McResult<(cmt, ast::Mutability, ty::Region)> { /*! * Given a pattern P like: `[_, ..Q, _]`, where `vec_cmt` is * the cmt for `P`, `slice_pat` is the pattern `Q`, returns: * - a cmt for `Q` * - the mutability and region of the slice `Q` * * These last two bits of info happen to be things that * borrowck needs. */ let slice_ty = if_ok!(self.node_ty(slice_pat.id)); let (slice_mutbl, slice_r) = vec_slice_info(self.tcx(), slice_pat, slice_ty); let cmt_slice = self.cat_index(slice_pat, vec_cmt, 0); return Ok((cmt_slice, slice_mutbl, slice_r)); fn vec_slice_info(tcx: &ty::ctxt, pat: @ast::Pat, slice_ty: ty::t) -> (ast::Mutability, ty::Region) { /*! * In a pattern like [a, b, ..c], normally `c` has slice type, * but if you have [a, b, ..ref c], then the type of `ref c` * will be `&&[]`, so to extract the slice details we have * to recurse through rptrs. */ match ty::get(slice_ty).sty { ty::ty_vec(_, ty::VstoreSlice(slice_r, mutbl)) => { (mutbl, slice_r) } ty::ty_rptr(_, ref mt) => { vec_slice_info(tcx, pat, mt.ty) } _ => { tcx.sess.span_bug( pat.span, format!("Type of slice pattern is not a slice")); } } } } pub fn cat_imm_interior(&mut self, node: &N, base_cmt: cmt, interior_ty: ty::t, interior: InteriorKind) -> cmt { @cmt_ { id: node.id(), span: node.span(), cat: cat_interior(base_cmt, interior), mutbl: base_cmt.mutbl.inherit(), ty: interior_ty } } pub fn cat_downcast(&mut self, node: &N, base_cmt: cmt, downcast_ty: ty::t) -> cmt { @cmt_ { id: node.id(), span: node.span(), cat: cat_downcast(base_cmt), mutbl: base_cmt.mutbl.inherit(), ty: downcast_ty } } pub fn cat_pattern(&mut self, cmt: cmt, pat: @ast::Pat, op: |&mut MemCategorizationContext, cmt, @ast::Pat|) -> McResult<()> { // Here, `cmt` is the categorization for the value being // matched and pat is the pattern it is being matched against. // // In general, the way that this works is that we walk down // the pattern, constructing a cmt that represents the path // that will be taken to reach the value being matched. // // When we encounter named bindings, we take the cmt that has // been built up and pass it off to guarantee_valid() so that // we can be sure that the binding will remain valid for the // duration of the arm. // // (*2) There is subtlety concerning the correspondence between // pattern ids and types as compared to *expression* ids and // types. This is explained briefly. on the definition of the // type `cmt`, so go off and read what it says there, then // come back and I'll dive into a bit more detail here. :) OK, // back? // // In general, the id of the cmt should be the node that // "produces" the value---patterns aren't executable code // exactly, but I consider them to "execute" when they match a // value, and I consider them to produce the value that was // matched. So if you have something like: // // let x = @@3; // match x { // @@y { ... } // } // // In this case, the cmt and the relevant ids would be: // // CMT Id Type of Id Type of cmt // // local(x)->@->@ // ^~~~~~~^ `x` from discr @@int @@int // ^~~~~~~~~~^ `@@y` pattern node @@int @int // ^~~~~~~~~~~~~^ `@y` pattern node @int int // // You can see that the types of the id and the cmt are in // sync in the first line, because that id is actually the id // of an expression. But once we get to pattern ids, the types // step out of sync again. So you'll see below that we always // get the type of the *subpattern* and use that. debug!("cat_pattern: id={} pat={} cmt={}", pat.id, pprust::pat_to_str(pat), cmt.repr(self.tcx())); op(self, cmt, pat); match pat.node { ast::PatWild | ast::PatWildMulti => { // _ } ast::PatEnum(_, None) => { // variant(..) } ast::PatEnum(_, Some(ref subpats)) => { match self.tcx().def_map.borrow().find(&pat.id) { Some(&ast::DefVariant(enum_did, _, _)) => { // variant(x, y, z) let downcast_cmt = { if ty::enum_is_univariant(self.tcx(), enum_did) { cmt // univariant, no downcast needed } else { self.cat_downcast(pat, cmt, cmt.ty) } }; for (i, &subpat) in subpats.iter().enumerate() { let subpat_ty = if_ok!(self.pat_ty(subpat)); // see (*2) let subcmt = self.cat_imm_interior( pat, downcast_cmt, subpat_ty, InteriorField(PositionalField(i))); if_ok!(self.cat_pattern(subcmt, subpat, |x,y,z| op(x,y,z))); } } Some(&ast::DefFn(..)) | Some(&ast::DefStruct(..)) => { for (i, &subpat) in subpats.iter().enumerate() { let subpat_ty = if_ok!(self.pat_ty(subpat)); // see (*2) let cmt_field = self.cat_imm_interior( pat, cmt, subpat_ty, InteriorField(PositionalField(i))); if_ok!(self.cat_pattern(cmt_field, subpat, |x,y,z| op(x,y,z))); } } Some(&ast::DefStatic(..)) => { for &subpat in subpats.iter() { if_ok!(self.cat_pattern(cmt, subpat, |x,y,z| op(x,y,z))); } } _ => { self.tcx().sess.span_bug( pat.span, "enum pattern didn't resolve to enum or struct"); } } } ast::PatIdent(_, _, Some(subpat)) => { if_ok!(self.cat_pattern(cmt, subpat, op)); } ast::PatIdent(_, _, None) => { // nullary variant or identifier: ignore } ast::PatStruct(_, ref field_pats, _) => { // {f1: p1, ..., fN: pN} for fp in field_pats.iter() { let field_ty = if_ok!(self.pat_ty(fp.pat)); // see (*2) let cmt_field = self.cat_field(pat, cmt, fp.ident, field_ty); if_ok!(self.cat_pattern(cmt_field, fp.pat, |x,y,z| op(x,y,z))); } } ast::PatTup(ref subpats) => { // (p1, ..., pN) for (i, &subpat) in subpats.iter().enumerate() { let subpat_ty = if_ok!(self.pat_ty(subpat)); // see (*2) let subcmt = self.cat_imm_interior( pat, cmt, subpat_ty, InteriorField(PositionalField(i))); if_ok!(self.cat_pattern(subcmt, subpat, |x,y,z| op(x,y,z))); } } ast::PatUniq(subpat) | ast::PatRegion(subpat) => { // @p1, ~p1 let subcmt = self.cat_deref(pat, cmt, 0); if_ok!(self.cat_pattern(subcmt, subpat, op)); } ast::PatVec(ref before, slice, ref after) => { let elt_cmt = self.cat_index(pat, cmt, 0); for &before_pat in before.iter() { if_ok!(self.cat_pattern(elt_cmt, before_pat, |x,y,z| op(x,y,z))); } for &slice_pat in slice.iter() { let slice_ty = if_ok!(self.pat_ty(slice_pat)); let slice_cmt = self.cat_rvalue_node(pat.id(), pat.span(), slice_ty); if_ok!(self.cat_pattern(slice_cmt, slice_pat, |x,y,z| op(x,y,z))); } for &after_pat in after.iter() { if_ok!(self.cat_pattern(elt_cmt, after_pat, |x,y,z| op(x,y,z))); } } ast::PatLit(_) | ast::PatRange(_, _) => { /*always ok*/ } } Ok(()) } pub fn cmt_to_str(&self, cmt: cmt) -> ~str { match cmt.cat { cat_static_item => { ~"static item" } cat_copied_upvar(_) => { ~"captured outer variable in a proc" } cat_rvalue(..) => { ~"non-lvalue" } cat_local(_) => { ~"local variable" } cat_arg(..) => { ~"argument" } cat_deref(base, _, pk) => { match base.cat { cat_upvar(..) => { format!("captured outer variable") } _ => { format!("dereference of `{}`-pointer", ptr_sigil(pk)) } } } cat_interior(_, InteriorField(NamedField(_))) => { ~"field" } cat_interior(_, InteriorField(PositionalField(_))) => { ~"anonymous field" } cat_interior(_, InteriorElement(VecElement)) => { ~"vec content" } cat_interior(_, InteriorElement(StrElement)) => { ~"str content" } cat_interior(_, InteriorElement(OtherElement)) => { ~"indexed content" } cat_upvar(..) => { ~"captured outer variable" } cat_discr(cmt, _) => { self.cmt_to_str(cmt) } cat_downcast(cmt) => { self.cmt_to_str(cmt) } } } } pub enum InteriorSafety { InteriorUnsafe, InteriorSafe } pub enum AliasableReason { AliasableManaged, AliasableBorrowed, AliasableOther, AliasableStatic(InteriorSafety), AliasableStaticMut(InteriorSafety), } impl cmt_ { pub fn guarantor(self) -> cmt { //! Returns `self` after stripping away any owned pointer derefs or //! interior content. The return value is basically the `cmt` which //! determines how long the value in `self` remains live. match self.cat { cat_rvalue(..) | cat_static_item | cat_copied_upvar(..) | cat_local(..) | cat_arg(..) | cat_deref(_, _, UnsafePtr(..)) | cat_deref(_, _, GcPtr(..)) | cat_deref(_, _, BorrowedPtr(..)) | cat_upvar(..) => { @self } cat_downcast(b) | cat_discr(b, _) | cat_interior(b, _) | cat_deref(b, _, OwnedPtr) => { b.guarantor() } } } pub fn freely_aliasable(&self, ctxt: &ty::ctxt) -> Option { /*! * Returns `Some(_)` if this lvalue represents a freely aliasable * pointer type. */ // Maybe non-obvious: copied upvars can only be considered // non-aliasable in once closures, since any other kind can be // aliased and eventually recused. match self.cat { cat_deref(b, _, BorrowedPtr(ty::MutBorrow, _)) | cat_deref(b, _, BorrowedPtr(ty::UniqueImmBorrow, _)) | cat_downcast(b) | cat_deref(b, _, OwnedPtr) | cat_interior(b, _) | cat_discr(b, _) => { // Aliasability depends on base cmt b.freely_aliasable(ctxt) } cat_copied_upvar(CopiedUpvar {onceness: ast::Once, ..}) | cat_rvalue(..) | cat_local(..) | cat_upvar(..) | cat_arg(_) | cat_deref(_, _, UnsafePtr(..)) => { // yes, it's aliasable, but... None } cat_copied_upvar(CopiedUpvar {onceness: ast::Many, ..}) => { Some(AliasableOther) } cat_static_item(..) => { let int_safe = if ty::type_interior_is_unsafe(ctxt, self.ty) { InteriorUnsafe } else { InteriorSafe }; if self.mutbl.is_mutable() { Some(AliasableStaticMut(int_safe)) } else { Some(AliasableStatic(int_safe)) } } cat_deref(_, _, GcPtr) => { Some(AliasableManaged) } cat_deref(_, _, BorrowedPtr(ty::ImmBorrow, _)) => { Some(AliasableBorrowed) } } } } impl Repr for cmt_ { fn repr(&self, tcx: &ty::ctxt) -> ~str { format!("\\{{} id:{} m:{:?} ty:{}\\}", self.cat.repr(tcx), self.id, self.mutbl, self.ty.repr(tcx)) } } impl Repr for categorization { fn repr(&self, tcx: &ty::ctxt) -> ~str { match *self { cat_static_item | cat_rvalue(..) | cat_copied_upvar(..) | cat_local(..) | cat_upvar(..) | cat_arg(..) => { format!("{:?}", *self) } cat_deref(cmt, derefs, ptr) => { format!("{}-{}{}->", cmt.cat.repr(tcx), ptr_sigil(ptr), derefs) } cat_interior(cmt, interior) => { format!("{}.{}", cmt.cat.repr(tcx), interior.repr(tcx)) } cat_downcast(cmt) => { format!("{}->(enum)", cmt.cat.repr(tcx)) } cat_discr(cmt, _) => { cmt.cat.repr(tcx) } } } } pub fn ptr_sigil(ptr: PointerKind) -> &'static str { match ptr { OwnedPtr => "~", GcPtr => "@", BorrowedPtr(ty::ImmBorrow, _) => "&", BorrowedPtr(ty::MutBorrow, _) => "&mut", BorrowedPtr(ty::UniqueImmBorrow, _) => "&unique", UnsafePtr(_) => "*" } } impl Repr for InteriorKind { fn repr(&self, _tcx: &ty::ctxt) -> ~str { match *self { InteriorField(NamedField(fld)) => { token::get_name(fld).get().to_str() } InteriorField(PositionalField(i)) => format!("\\#{:?}", i), InteriorElement(_) => ~"[]", } } } fn element_kind(t: ty::t) -> ElementKind { match ty::get(t).sty { ty::ty_vec(..) => VecElement, ty::ty_str(..) => StrElement, _ => OtherElement } }