// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. #![allow(non_uppercase_pattern_statics)] use arena::TypedArena; use lib::llvm::{SequentiallyConsistent, Acquire, Release, Xchg}; use lib::llvm::{ValueRef, Pointer, Array, Struct}; use lib; use middle::trans::base::*; use middle::trans::build::*; use middle::trans::common::*; use middle::trans::datum::*; use middle::trans::glue; use middle::trans::type_of::*; use middle::trans::type_of; use middle::trans::machine; use middle::trans::machine::llsize_of; use middle::trans::type_::Type; use middle::ty; use syntax::ast; use syntax::ast_map; use syntax::parse::token; use util::ppaux::ty_to_str; pub fn get_simple_intrinsic(ccx: &CrateContext, item: &ast::ForeignItem) -> Option { let name = match token::get_ident(item.ident).get() { "sqrtf32" => "llvm.sqrt.f32", "sqrtf64" => "llvm.sqrt.f64", "powif32" => "llvm.powi.f32", "powif64" => "llvm.powi.f64", "sinf32" => "llvm.sin.f32", "sinf64" => "llvm.sin.f64", "cosf32" => "llvm.cos.f32", "cosf64" => "llvm.cos.f64", "powf32" => "llvm.pow.f32", "powf64" => "llvm.pow.f64", "expf32" => "llvm.exp.f32", "expf64" => "llvm.exp.f64", "exp2f32" => "llvm.exp2.f32", "exp2f64" => "llvm.exp2.f64", "logf32" => "llvm.log.f32", "logf64" => "llvm.log.f64", "log10f32" => "llvm.log10.f32", "log10f64" => "llvm.log10.f64", "log2f32" => "llvm.log2.f32", "log2f64" => "llvm.log2.f64", "fmaf32" => "llvm.fma.f32", "fmaf64" => "llvm.fma.f64", "fabsf32" => "llvm.fabs.f32", "fabsf64" => "llvm.fabs.f64", "copysignf32" => "llvm.copysign.f32", "copysignf64" => "llvm.copysign.f64", "floorf32" => "llvm.floor.f32", "floorf64" => "llvm.floor.f64", "ceilf32" => "llvm.ceil.f32", "ceilf64" => "llvm.ceil.f64", "truncf32" => "llvm.trunc.f32", "truncf64" => "llvm.trunc.f64", "rintf32" => "llvm.rint.f32", "rintf64" => "llvm.rint.f64", "nearbyintf32" => "llvm.nearbyint.f32", "nearbyintf64" => "llvm.nearbyint.f64", "roundf32" => "llvm.round.f32", "roundf64" => "llvm.round.f64", "ctpop8" => "llvm.ctpop.i8", "ctpop16" => "llvm.ctpop.i16", "ctpop32" => "llvm.ctpop.i32", "ctpop64" => "llvm.ctpop.i64", "bswap16" => "llvm.bswap.i16", "bswap32" => "llvm.bswap.i32", "bswap64" => "llvm.bswap.i64", _ => return None }; Some(ccx.get_intrinsic(&name)) } pub fn trans_intrinsic(ccx: &CrateContext, decl: ValueRef, item: &ast::ForeignItem, substs: ¶m_substs, ref_id: Option) { debug!("trans_intrinsic(item.ident={})", token::get_ident(item.ident)); fn with_overflow_instrinsic(bcx: &Block, name: &'static str, t: ty::t) { let first_real_arg = bcx.fcx.arg_pos(0u); let a = get_param(bcx.fcx.llfn, first_real_arg); let b = get_param(bcx.fcx.llfn, first_real_arg + 1); let llfn = bcx.ccx().get_intrinsic(&name); // convert `i1` to a `bool`, and write to the out parameter let val = Call(bcx, llfn, [a, b], []); let result = ExtractValue(bcx, val, 0); let overflow = ZExt(bcx, ExtractValue(bcx, val, 1), Type::bool(bcx.ccx())); let ret = C_undef(type_of::type_of(bcx.ccx(), t)); let ret = InsertValue(bcx, ret, result, 0); let ret = InsertValue(bcx, ret, overflow, 1); if type_is_immediate(bcx.ccx(), t) { Ret(bcx, ret); } else { let retptr = get_param(bcx.fcx.llfn, bcx.fcx.out_arg_pos()); Store(bcx, ret, retptr); RetVoid(bcx); } } fn volatile_load_intrinsic(bcx: &Block) { let first_real_arg = bcx.fcx.arg_pos(0u); let src = get_param(bcx.fcx.llfn, first_real_arg); let val = VolatileLoad(bcx, src); Ret(bcx, val); } fn volatile_store_intrinsic(bcx: &Block) { let first_real_arg = bcx.fcx.arg_pos(0u); let dst = get_param(bcx.fcx.llfn, first_real_arg); let val = get_param(bcx.fcx.llfn, first_real_arg + 1); VolatileStore(bcx, val, dst); RetVoid(bcx); } fn copy_intrinsic(bcx: &Block, allow_overlap: bool, volatile: bool, tp_ty: ty::t) { let ccx = bcx.ccx(); let lltp_ty = type_of::type_of(ccx, tp_ty); let align = C_i32(ccx, machine::llalign_of_min(ccx, lltp_ty) as i32); let size = machine::llsize_of(ccx, lltp_ty); let int_size = machine::llbitsize_of_real(ccx, ccx.int_type); let name = if allow_overlap { if int_size == 32 { "llvm.memmove.p0i8.p0i8.i32" } else { "llvm.memmove.p0i8.p0i8.i64" } } else { if int_size == 32 { "llvm.memcpy.p0i8.p0i8.i32" } else { "llvm.memcpy.p0i8.p0i8.i64" } }; let decl = bcx.fcx.llfn; let first_real_arg = bcx.fcx.arg_pos(0u); let dst_ptr = PointerCast(bcx, get_param(decl, first_real_arg), Type::i8p(ccx)); let src_ptr = PointerCast(bcx, get_param(decl, first_real_arg + 1), Type::i8p(ccx)); let count = get_param(decl, first_real_arg + 2); let llfn = ccx.get_intrinsic(&name); Call(bcx, llfn, [dst_ptr, src_ptr, Mul(bcx, size, count), align, C_i1(ccx, volatile)], []); RetVoid(bcx); } fn memset_intrinsic(bcx: &Block, volatile: bool, tp_ty: ty::t) { let ccx = bcx.ccx(); let lltp_ty = type_of::type_of(ccx, tp_ty); let align = C_i32(ccx, machine::llalign_of_min(ccx, lltp_ty) as i32); let size = machine::llsize_of(ccx, lltp_ty); let name = if machine::llbitsize_of_real(ccx, ccx.int_type) == 32 { "llvm.memset.p0i8.i32" } else { "llvm.memset.p0i8.i64" }; let decl = bcx.fcx.llfn; let first_real_arg = bcx.fcx.arg_pos(0u); let dst_ptr = PointerCast(bcx, get_param(decl, first_real_arg), Type::i8p(ccx)); let val = get_param(decl, first_real_arg + 1); let count = get_param(decl, first_real_arg + 2); let llfn = ccx.get_intrinsic(&name); Call(bcx, llfn, [dst_ptr, val, Mul(bcx, size, count), align, C_i1(ccx, volatile)], []); RetVoid(bcx); } fn count_zeros_intrinsic(bcx: &Block, name: &'static str) { let x = get_param(bcx.fcx.llfn, bcx.fcx.arg_pos(0u)); let y = C_i1(bcx.ccx(), false); let llfn = bcx.ccx().get_intrinsic(&name); let llcall = Call(bcx, llfn, [x, y], []); Ret(bcx, llcall); } let output_type = ty::ty_fn_ret(ty::node_id_to_type(ccx.tcx(), item.id)); let arena = TypedArena::new(); let fcx = new_fn_ctxt(ccx, decl, item.id, false, output_type, Some(&*substs), Some(item.span), &arena); init_function(&fcx, true, output_type); set_always_inline(fcx.llfn); let mut bcx = fcx.entry_bcx.borrow().clone().unwrap(); let first_real_arg = fcx.arg_pos(0u); let name = token::get_ident(item.ident); // This requires that atomic intrinsics follow a specific naming pattern: // "atomic_[_], and no ordering means SeqCst if name.get().starts_with("atomic_") { let split: Vec<&str> = name.get().split('_').collect(); assert!(split.len() >= 2, "Atomic intrinsic not correct format"); let order = if split.len() == 2 { lib::llvm::SequentiallyConsistent } else { match *split.get(2) { "relaxed" => lib::llvm::Monotonic, "acq" => lib::llvm::Acquire, "rel" => lib::llvm::Release, "acqrel" => lib::llvm::AcquireRelease, _ => ccx.sess().fatal("unknown ordering in atomic intrinsic") } }; match *split.get(1) { "cxchg" => { // See include/llvm/IR/Instructions.h for their implementation // of this, I assume that it's good enough for us to use for // now. let strongest_failure_ordering = match order { lib::llvm::NotAtomic | lib::llvm::Unordered => ccx.sess().fatal("cmpxchg must be atomic"), lib::llvm::Monotonic | lib::llvm::Release => lib::llvm::Monotonic, lib::llvm::Acquire | lib::llvm::AcquireRelease => lib::llvm::Acquire, lib::llvm::SequentiallyConsistent => lib::llvm::SequentiallyConsistent, }; let old = AtomicCmpXchg(bcx, get_param(decl, first_real_arg), get_param(decl, first_real_arg + 1u), get_param(decl, first_real_arg + 2u), order, strongest_failure_ordering); Ret(bcx, old); } "load" => { let old = AtomicLoad(bcx, get_param(decl, first_real_arg), order); Ret(bcx, old); } "store" => { AtomicStore(bcx, get_param(decl, first_real_arg + 1u), get_param(decl, first_real_arg), order); RetVoid(bcx); } "fence" => { AtomicFence(bcx, order); RetVoid(bcx); } op => { // These are all AtomicRMW ops let atom_op = match op { "xchg" => lib::llvm::Xchg, "xadd" => lib::llvm::Add, "xsub" => lib::llvm::Sub, "and" => lib::llvm::And, "nand" => lib::llvm::Nand, "or" => lib::llvm::Or, "xor" => lib::llvm::Xor, "max" => lib::llvm::Max, "min" => lib::llvm::Min, "umax" => lib::llvm::UMax, "umin" => lib::llvm::UMin, _ => ccx.sess().fatal("unknown atomic operation") }; let old = AtomicRMW(bcx, atom_op, get_param(decl, first_real_arg), get_param(decl, first_real_arg + 1u), order); Ret(bcx, old); } } fcx.cleanup(); return; } match name.get() { "abort" => { let llfn = bcx.ccx().get_intrinsic(&("llvm.trap")); Call(bcx, llfn, [], []); Unreachable(bcx); } "breakpoint" => { let llfn = bcx.ccx().get_intrinsic(&("llvm.debugtrap")); Call(bcx, llfn, [], []); RetVoid(bcx); } "size_of" => { let tp_ty = *substs.tys.get(0); let lltp_ty = type_of::type_of(ccx, tp_ty); Ret(bcx, C_uint(ccx, machine::llsize_of_real(ccx, lltp_ty) as uint)); } "move_val_init" => { // Create a datum reflecting the value being moved. // Use `appropriate_mode` so that the datum is by ref // if the value is non-immediate. Note that, with // intrinsics, there are no argument cleanups to // concern ourselves with, so we can use an rvalue datum. let tp_ty = *substs.tys.get(0); let mode = appropriate_rvalue_mode(ccx, tp_ty); let src = Datum {val: get_param(decl, first_real_arg + 1u), ty: tp_ty, kind: Rvalue(mode)}; bcx = src.store_to(bcx, get_param(decl, first_real_arg)); RetVoid(bcx); } "min_align_of" => { let tp_ty = *substs.tys.get(0); let lltp_ty = type_of::type_of(ccx, tp_ty); Ret(bcx, C_uint(ccx, machine::llalign_of_min(ccx, lltp_ty) as uint)); } "pref_align_of"=> { let tp_ty = *substs.tys.get(0); let lltp_ty = type_of::type_of(ccx, tp_ty); Ret(bcx, C_uint(ccx, machine::llalign_of_pref(ccx, lltp_ty) as uint)); } "get_tydesc" => { let tp_ty = *substs.tys.get(0); let static_ti = get_tydesc(ccx, tp_ty); glue::lazily_emit_visit_glue(ccx, &*static_ti); // FIXME (#3730): ideally this shouldn't need a cast, // but there's a circularity between translating rust types to llvm // types and having a tydesc type available. So I can't directly access // the llvm type of intrinsic::TyDesc struct. let userland_tydesc_ty = type_of::type_of(ccx, output_type); let td = PointerCast(bcx, static_ti.tydesc, userland_tydesc_ty); Ret(bcx, td); } "type_id" => { let hash = ty::hash_crate_independent( ccx.tcx(), *substs.tys.get(0), &ccx.link_meta.crate_hash); // NB: This needs to be kept in lockstep with the TypeId struct in // libstd/unstable/intrinsics.rs let val = C_named_struct(type_of::type_of(ccx, output_type), [C_u64(ccx, hash)]); match bcx.fcx.llretptr.get() { Some(ptr) => { Store(bcx, val, ptr); RetVoid(bcx); }, None => Ret(bcx, val) } } "init" => { let tp_ty = *substs.tys.get(0); let lltp_ty = type_of::type_of(ccx, tp_ty); match bcx.fcx.llretptr.get() { Some(ptr) => { Store(bcx, C_null(lltp_ty), ptr); RetVoid(bcx); } None if ty::type_is_nil(tp_ty) => RetVoid(bcx), None => Ret(bcx, C_null(lltp_ty)), } } "uninit" => { // Do nothing, this is effectively a no-op let retty = *substs.tys.get(0); if type_is_immediate(ccx, retty) && !return_type_is_void(ccx, retty) { unsafe { Ret(bcx, lib::llvm::llvm::LLVMGetUndef(type_of(ccx, retty).to_ref())); } } else { RetVoid(bcx) } } "forget" => { RetVoid(bcx); } "transmute" => { let (in_type, out_type) = (*substs.tys.get(0), *substs.tys.get(1)); let llintype = type_of::type_of(ccx, in_type); let llouttype = type_of::type_of(ccx, out_type); let in_type_size = machine::llbitsize_of_real(ccx, llintype); let out_type_size = machine::llbitsize_of_real(ccx, llouttype); if in_type_size != out_type_size { let sp = match ccx.tcx.map.get(ref_id.unwrap()) { ast_map::NodeExpr(e) => e.span, _ => fail!("transmute has non-expr arg"), }; ccx.sess().span_fatal(sp, format!("transmute called on types with different sizes: \ {intype} ({insize, plural, =1{# bit} other{# bits}}) to \ {outtype} ({outsize, plural, =1{# bit} other{# bits}})", intype = ty_to_str(ccx.tcx(), in_type), insize = in_type_size as uint, outtype = ty_to_str(ccx.tcx(), out_type), outsize = out_type_size as uint)); } if !return_type_is_void(ccx, out_type) { let llsrcval = get_param(decl, first_real_arg); if type_is_immediate(ccx, in_type) { match fcx.llretptr.get() { Some(llretptr) => { Store(bcx, llsrcval, PointerCast(bcx, llretptr, llintype.ptr_to())); RetVoid(bcx); } None => match (llintype.kind(), llouttype.kind()) { (Pointer, other) | (other, Pointer) if other != Pointer => { let tmp = Alloca(bcx, llouttype, ""); Store(bcx, llsrcval, PointerCast(bcx, tmp, llintype.ptr_to())); Ret(bcx, Load(bcx, tmp)); } (Array, _) | (_, Array) | (Struct, _) | (_, Struct) => { let tmp = Alloca(bcx, llouttype, ""); Store(bcx, llsrcval, PointerCast(bcx, tmp, llintype.ptr_to())); Ret(bcx, Load(bcx, tmp)); } _ => { let llbitcast = BitCast(bcx, llsrcval, llouttype); Ret(bcx, llbitcast) } } } } else if type_is_immediate(ccx, out_type) { let llsrcptr = PointerCast(bcx, llsrcval, llouttype.ptr_to()); let ll_load = Load(bcx, llsrcptr); Ret(bcx, ll_load); } else { // NB: Do not use a Load and Store here. This causes massive // code bloat when `transmute` is used on large structural // types. let lldestptr = fcx.llretptr.get().unwrap(); let lldestptr = PointerCast(bcx, lldestptr, Type::i8p(ccx)); let llsrcptr = PointerCast(bcx, llsrcval, Type::i8p(ccx)); let llsize = llsize_of(ccx, llintype); call_memcpy(bcx, lldestptr, llsrcptr, llsize, 1); RetVoid(bcx); }; } else { RetVoid(bcx); } } "needs_drop" => { let tp_ty = *substs.tys.get(0); Ret(bcx, C_bool(ccx, ty::type_needs_drop(ccx.tcx(), tp_ty))); } "owns_managed" => { let tp_ty = *substs.tys.get(0); Ret(bcx, C_bool(ccx, ty::type_contents(ccx.tcx(), tp_ty).owns_managed())); } "visit_tydesc" => { let td = get_param(decl, first_real_arg); let visitor = get_param(decl, first_real_arg + 1u); let td = PointerCast(bcx, td, ccx.tydesc_type().ptr_to()); glue::call_visit_glue(bcx, visitor, td, None); RetVoid(bcx); } "offset" => { let ptr = get_param(decl, first_real_arg); let offset = get_param(decl, first_real_arg + 1); let lladdr = InBoundsGEP(bcx, ptr, [offset]); Ret(bcx, lladdr); } "copy_nonoverlapping_memory" => copy_intrinsic(bcx, false, false, *substs.tys.get(0)), "copy_memory" => copy_intrinsic(bcx, true, false, *substs.tys.get(0)), "set_memory" => memset_intrinsic(bcx, false, *substs.tys.get(0)), "volatile_copy_nonoverlapping_memory" => copy_intrinsic(bcx, false, true, *substs.tys.get(0)), "volatile_copy_memory" => copy_intrinsic(bcx, true, true, *substs.tys.get(0)), "volatile_set_memory" => memset_intrinsic(bcx, true, *substs.tys.get(0)), "ctlz8" => count_zeros_intrinsic(bcx, "llvm.ctlz.i8"), "ctlz16" => count_zeros_intrinsic(bcx, "llvm.ctlz.i16"), "ctlz32" => count_zeros_intrinsic(bcx, "llvm.ctlz.i32"), "ctlz64" => count_zeros_intrinsic(bcx, "llvm.ctlz.i64"), "cttz8" => count_zeros_intrinsic(bcx, "llvm.cttz.i8"), "cttz16" => count_zeros_intrinsic(bcx, "llvm.cttz.i16"), "cttz32" => count_zeros_intrinsic(bcx, "llvm.cttz.i32"), "cttz64" => count_zeros_intrinsic(bcx, "llvm.cttz.i64"), "volatile_load" => volatile_load_intrinsic(bcx), "volatile_store" => volatile_store_intrinsic(bcx), "i8_add_with_overflow" => with_overflow_instrinsic(bcx, "llvm.sadd.with.overflow.i8", output_type), "i16_add_with_overflow" => with_overflow_instrinsic(bcx, "llvm.sadd.with.overflow.i16", output_type), "i32_add_with_overflow" => with_overflow_instrinsic(bcx, "llvm.sadd.with.overflow.i32", output_type), "i64_add_with_overflow" => with_overflow_instrinsic(bcx, "llvm.sadd.with.overflow.i64", output_type), "u8_add_with_overflow" => with_overflow_instrinsic(bcx, "llvm.uadd.with.overflow.i8", output_type), "u16_add_with_overflow" => with_overflow_instrinsic(bcx, "llvm.uadd.with.overflow.i16", output_type), "u32_add_with_overflow" => with_overflow_instrinsic(bcx, "llvm.uadd.with.overflow.i32", output_type), "u64_add_with_overflow" => with_overflow_instrinsic(bcx, "llvm.uadd.with.overflow.i64", output_type), "i8_sub_with_overflow" => with_overflow_instrinsic(bcx, "llvm.ssub.with.overflow.i8", output_type), "i16_sub_with_overflow" => with_overflow_instrinsic(bcx, "llvm.ssub.with.overflow.i16", output_type), "i32_sub_with_overflow" => with_overflow_instrinsic(bcx, "llvm.ssub.with.overflow.i32", output_type), "i64_sub_with_overflow" => with_overflow_instrinsic(bcx, "llvm.ssub.with.overflow.i64", output_type), "u8_sub_with_overflow" => with_overflow_instrinsic(bcx, "llvm.usub.with.overflow.i8", output_type), "u16_sub_with_overflow" => with_overflow_instrinsic(bcx, "llvm.usub.with.overflow.i16", output_type), "u32_sub_with_overflow" => with_overflow_instrinsic(bcx, "llvm.usub.with.overflow.i32", output_type), "u64_sub_with_overflow" => with_overflow_instrinsic(bcx, "llvm.usub.with.overflow.i64", output_type), "i8_mul_with_overflow" => with_overflow_instrinsic(bcx, "llvm.smul.with.overflow.i8", output_type), "i16_mul_with_overflow" => with_overflow_instrinsic(bcx, "llvm.smul.with.overflow.i16", output_type), "i32_mul_with_overflow" => with_overflow_instrinsic(bcx, "llvm.smul.with.overflow.i32", output_type), "i64_mul_with_overflow" => with_overflow_instrinsic(bcx, "llvm.smul.with.overflow.i64", output_type), "u8_mul_with_overflow" => with_overflow_instrinsic(bcx, "llvm.umul.with.overflow.i8", output_type), "u16_mul_with_overflow" => with_overflow_instrinsic(bcx, "llvm.umul.with.overflow.i16", output_type), "u32_mul_with_overflow" => with_overflow_instrinsic(bcx, "llvm.umul.with.overflow.i32", output_type), "u64_mul_with_overflow" => with_overflow_instrinsic(bcx, "llvm.umul.with.overflow.i64", output_type), _ => { // Could we make this an enum rather than a string? does it get // checked earlier? ccx.sess().span_bug(item.span, "unknown intrinsic"); } } fcx.cleanup(); }