import std._str; import std._vec; import std._str.rustrt.sbuf; import std._vec.rustrt.vbuf; import std.map.hashmap; import front.ast; import driver.session; import back.x86; import back.abi; import util.common.istr; import util.common.new_str_hash; import lib.llvm.llvm; import lib.llvm.builder; import lib.llvm.llvm.ModuleRef; import lib.llvm.llvm.ValueRef; import lib.llvm.llvm.TypeRef; import lib.llvm.llvm.BuilderRef; import lib.llvm.llvm.BasicBlockRef; import lib.llvm.False; import lib.llvm.True; type glue_fns = rec(ValueRef activate_glue, ValueRef yield_glue, vec[ValueRef] upcall_glues); type trans_ctxt = rec(session.session sess, ModuleRef llmod, hashmap[str,ValueRef] upcalls, @glue_fns glues, str path); type fn_ctxt = rec(ValueRef llfn, ValueRef lloutptr, ValueRef lltaskptr, @trans_ctxt tcx); type terminator = fn(@fn_ctxt cx, builder build); type block_ctxt = rec(BasicBlockRef llbb, builder build, terminator term, @fn_ctxt fcx); // LLVM type constructors. fn T_nil() -> TypeRef { ret llvm.LLVMVoidType(); } fn T_int() -> TypeRef { ret llvm.LLVMInt32Type(); } fn T_fn(vec[TypeRef] inputs, TypeRef output) -> TypeRef { ret llvm.LLVMFunctionType(output, _vec.buf[TypeRef](inputs), _vec.len[TypeRef](inputs), False); } fn T_ptr(TypeRef t) -> TypeRef { ret llvm.LLVMPointerType(t, 0u); } fn T_struct(vec[TypeRef] elts) -> TypeRef { ret llvm.LLVMStructType(_vec.buf[TypeRef](elts), _vec.len[TypeRef](elts), False); } fn T_opaque() -> TypeRef { ret llvm.LLVMOpaqueType(); } fn T_task() -> TypeRef { ret T_struct(vec(T_int(), // Refcount T_int(), // Delegate pointer T_int(), // Stack segment pointer T_int(), // Runtime SP T_int(), // Rust SP T_int(), // GC chain T_int(), // Domain pointer T_int() // Crate cache pointer )); } fn T_double() -> TypeRef { ret llvm.LLVMDoubleType(); } fn T_taskptr() -> TypeRef { ret T_ptr(T_task()); } // LLVM constant constructors. fn C_null(TypeRef t) -> ValueRef { ret llvm.LLVMConstNull(t); } fn C_int(int i) -> ValueRef { // FIXME. We can't use LLVM.ULongLong with our existing minimal native // API, which only knows word-sized args. Lucky for us LLVM has a "take a // string encoding" version. Hilarious. Please fix to handle: // // ret llvm.LLVMConstInt(T_int(), t as LLVM.ULongLong, False); // ret llvm.LLVMConstIntOfString(T_int(), _str.buf(istr(i)), 10); } fn C_str(str s) -> ValueRef { ret llvm.LLVMConstString(_str.buf(s), _str.byte_len(s), False); } fn C_struct(vec[ValueRef] elts) -> ValueRef { ret llvm.LLVMConstStruct(_vec.buf[ValueRef](elts), _vec.len[ValueRef](elts), False); } fn decl_cdecl_fn(ModuleRef llmod, str name, vec[TypeRef] inputs, TypeRef output) -> ValueRef { let TypeRef llty = T_fn(inputs, output); log "declaring " + name + " with type " + lib.llvm.type_to_str(llty); let ValueRef llfn = llvm.LLVMAddFunction(llmod, _str.buf(name), llty); llvm.LLVMSetFunctionCallConv(llfn, lib.llvm.LLVMCCallConv); ret llfn; } fn decl_glue(ModuleRef llmod, str s) -> ValueRef { ret decl_cdecl_fn(llmod, s, vec(T_taskptr()), T_nil()); } fn decl_upcall(ModuleRef llmod, uint _n) -> ValueRef { // It doesn't actually matter what type we come up with here, at the // moment, as we cast the upcall function pointers to int before passing // them to the indirect upcall-invocation glue. But eventually we'd like // to call them directly, once we have a calling convention worked out. let int n = _n as int; let str s = abi.upcall_glue_name(n); let vec[TypeRef] args = vec(T_taskptr(), // taskptr T_int()) // callee + _vec.init_elt[TypeRef](T_int(), n as uint); ret decl_cdecl_fn(llmod, s, args, T_int()); } fn get_upcall(@trans_ctxt cx, str name, int n_args) -> ValueRef { if (cx.upcalls.contains_key(name)) { ret cx.upcalls.get(name); } auto inputs = vec(T_taskptr()); inputs += _vec.init_elt[TypeRef](T_int(), n_args as uint); auto output = T_nil(); auto f = decl_cdecl_fn(cx.llmod, name, inputs, output); cx.upcalls.insert(name, f); ret f; } fn trans_upcall(@block_ctxt cx, str name, vec[ValueRef] args) -> ValueRef { let int n = _vec.len[ValueRef](args) as int; let ValueRef llupcall = get_upcall(cx.fcx.tcx, name, n); llupcall = llvm.LLVMConstPointerCast(llupcall, T_int()); let ValueRef llglue = cx.fcx.tcx.glues.upcall_glues.(n); let vec[ValueRef] call_args = vec(cx.fcx.lltaskptr, llupcall) + args; log "emitting indirect-upcall via " + abi.upcall_glue_name(n); for (ValueRef v in call_args) { log "arg: " + lib.llvm.type_to_str(llvm.LLVMTypeOf(v)); } log "emitting call to callee of type: " + lib.llvm.type_to_str(llvm.LLVMTypeOf(llglue)); ret cx.build.Call(llglue, call_args); } fn trans_log(@block_ctxt cx, &ast.atom a) { alt (a) { case (ast.atom_lit(?lit)) { alt (*lit) { case (ast.lit_int(?i)) { trans_upcall(cx, "upcall_log_int", vec(C_int(i))); } case (_) { cx.fcx.tcx.sess.unimpl("literal variant in trans_log"); } } } case (_) { cx.fcx.tcx.sess.unimpl("atom variant in trans_log"); } } } fn trans_stmt(@block_ctxt cx, &ast.stmt s) { alt (s) { case (ast.stmt_log(?a)) { trans_log(cx, *a); } case (_) { cx.fcx.tcx.sess.unimpl("stmt variant"); } } } fn default_terminate(@fn_ctxt cx, builder build) { build.RetVoid(); } fn trans_block(@fn_ctxt cx, &ast.block b, terminator term) { let BasicBlockRef llbb = llvm.LLVMAppendBasicBlock(cx.llfn, _str.buf("")); let BuilderRef llbuild = llvm.LLVMCreateBuilder(); llvm.LLVMPositionBuilderAtEnd(llbuild, llbb); auto bcx = @rec(llbb=llbb, build=builder(llbuild), term=term, fcx=cx); for (@ast.stmt s in b) { trans_stmt(bcx, *s); } bcx.term(cx, bcx.build); } fn trans_fn(@trans_ctxt cx, &ast._fn f) { let vec[TypeRef] args = vec(T_ptr(T_int()), // outptr. T_taskptr() // taskptr ); let ValueRef llfn = decl_cdecl_fn(cx.llmod, cx.path, args, T_nil()); let ValueRef lloutptr = llvm.LLVMGetParam(llfn, 0u); let ValueRef lltaskptr = llvm.LLVMGetParam(llfn, 1u); auto fcx = @rec(llfn=llfn, lloutptr=lloutptr, lltaskptr=lltaskptr, tcx=cx); auto term = default_terminate; trans_block(fcx, f.body, term); } fn trans_item(@trans_ctxt cx, &str name, &ast.item item) { auto sub_cx = @rec(path=cx.path + "." + name with *cx); alt (item) { case (ast.item_fn(?f)) { trans_fn(sub_cx, *f); } case (ast.item_mod(?m)) { trans_mod(sub_cx, *m); } } } fn trans_mod(@trans_ctxt cx, &ast._mod m) { for each (tup(str, ast.item) pair in m.items()) { trans_item(cx, pair._0, pair._1); } } fn trans_crate(session.session sess, ast.crate crate) { auto llmod = llvm.LLVMModuleCreateWithNameInContext(_str.buf("rust_out"), llvm.LLVMGetGlobalContext()); llvm.LLVMSetModuleInlineAsm(llmod, _str.buf(x86.get_module_asm())); auto glues = @rec(activate_glue = decl_glue(llmod, abi.activate_glue_name()), yield_glue = decl_glue(llmod, abi.yield_glue_name()), upcall_glues = _vec.init_fn[ValueRef](bind decl_upcall(llmod, _), abi.n_upcall_glues as uint)); auto cx = @rec(sess = sess, llmod = llmod, upcalls = new_str_hash[ValueRef](), glues = glues, path = ""); trans_mod(cx, crate.module); llvm.LLVMWriteBitcodeToFile(llmod, _str.buf("rust_out.bc")); llvm.LLVMDisposeModule(llmod); } // // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // compile-command: "make -k -C ../.. 2>&1 | sed -e 's/\\/x\\//x:\\//g'"; // End: //