//! For each definition, we track the following data. A definition //! here is defined somewhat circularly as "something with a `DefId`", //! but it generally corresponds to things like structs, enums, etc. //! There are also some rather random cases (like const initializer //! expressions) that are mostly just leftovers. pub use crate::def_id::DefPathHash; use crate::def_id::{CrateNum, DefIndex, LocalDefId, StableCrateId, CRATE_DEF_INDEX, LOCAL_CRATE}; use crate::def_path_hash_map::DefPathHashMap; use rustc_data_structures::fx::FxHashMap; use rustc_data_structures::stable_hasher::StableHasher; use rustc_index::vec::IndexVec; use rustc_span::hygiene::ExpnId; use rustc_span::symbol::{kw, sym, Symbol}; use rustc_span::Span; use std::fmt::{self, Write}; use std::hash::Hash; use tracing::debug; /// The `DefPathTable` maps `DefIndex`es to `DefKey`s and vice versa. /// Internally the `DefPathTable` holds a tree of `DefKey`s, where each `DefKey` /// stores the `DefIndex` of its parent. /// There is one `DefPathTable` for each crate. #[derive(Clone, Default, Debug)] pub struct DefPathTable { index_to_key: IndexVec, def_path_hashes: IndexVec, def_path_hash_to_index: DefPathHashMap, } impl DefPathTable { fn allocate(&mut self, key: DefKey, def_path_hash: DefPathHash) -> DefIndex { let index = { let index = DefIndex::from(self.index_to_key.len()); debug!("DefPathTable::insert() - {:?} <-> {:?}", key, index); self.index_to_key.push(key); index }; self.def_path_hashes.push(def_path_hash); debug_assert!(self.def_path_hashes.len() == self.index_to_key.len()); // Check for hash collisions of DefPathHashes. These should be // exceedingly rare. if let Some(existing) = self.def_path_hash_to_index.insert(&def_path_hash, &index) { let def_path1 = DefPath::make(LOCAL_CRATE, existing, |idx| self.def_key(idx)); let def_path2 = DefPath::make(LOCAL_CRATE, index, |idx| self.def_key(idx)); // Continuing with colliding DefPathHashes can lead to correctness // issues. We must abort compilation. // // The likelihood of such a collision is very small, so actually // running into one could be indicative of a poor hash function // being used. // // See the documentation for DefPathHash for more information. panic!( "found DefPathHash collision between {:?} and {:?}. \ Compilation cannot continue.", def_path1, def_path2 ); } // Assert that all DefPathHashes correctly contain the local crate's // StableCrateId #[cfg(debug_assertions)] if let Some(root) = self.def_path_hashes.get(CRATE_DEF_INDEX) { assert!(def_path_hash.stable_crate_id() == root.stable_crate_id()); } index } #[inline(always)] pub fn def_key(&self, index: DefIndex) -> DefKey { self.index_to_key[index] } #[inline(always)] pub fn def_path_hash(&self, index: DefIndex) -> DefPathHash { let hash = self.def_path_hashes[index]; debug!("def_path_hash({:?}) = {:?}", index, hash); hash } pub fn enumerated_keys_and_path_hashes( &self, ) -> impl Iterator + ExactSizeIterator + '_ { self.index_to_key .iter_enumerated() .map(move |(index, key)| (index, key, &self.def_path_hashes[index])) } } /// The definition table containing node definitions. /// It holds the `DefPathTable` for `LocalDefId`s/`DefPath`s. /// It also stores mappings to convert `LocalDefId`s to/from `HirId`s. #[derive(Clone, Debug)] pub struct Definitions { table: DefPathTable, next_disambiguator: FxHashMap<(LocalDefId, DefPathData), u32>, /// Item with a given `LocalDefId` was defined during macro expansion with ID `ExpnId`. expansions_that_defined: FxHashMap, def_id_to_span: IndexVec, /// The [StableCrateId] of the local crate. stable_crate_id: StableCrateId, } /// A unique identifier that we can use to lookup a definition /// precisely. It combines the index of the definition's parent (if /// any) with a `DisambiguatedDefPathData`. #[derive(Copy, Clone, PartialEq, Debug, Encodable, Decodable)] pub struct DefKey { /// The parent path. pub parent: Option, /// The identifier of this node. pub disambiguated_data: DisambiguatedDefPathData, } impl DefKey { pub(crate) fn compute_stable_hash(&self, parent: DefPathHash) -> DefPathHash { let mut hasher = StableHasher::new(); parent.hash(&mut hasher); let DisambiguatedDefPathData { ref data, disambiguator } = self.disambiguated_data; std::mem::discriminant(data).hash(&mut hasher); if let Some(name) = data.get_opt_name() { // Get a stable hash by considering the symbol chars rather than // the symbol index. name.as_str().hash(&mut hasher); } disambiguator.hash(&mut hasher); let local_hash: u64 = hasher.finish(); // Construct the new DefPathHash, making sure that the `crate_id` // portion of the hash is properly copied from the parent. This way the // `crate_id` part will be recursively propagated from the root to all // DefPathHashes in this DefPathTable. DefPathHash::new(parent.stable_crate_id(), local_hash) } } /// A pair of `DefPathData` and an integer disambiguator. The integer is /// normally `0`, but in the event that there are multiple defs with the /// same `parent` and `data`, we use this field to disambiguate /// between them. This introduces some artificial ordering dependency /// but means that if you have, e.g., two impls for the same type in /// the same module, they do get distinct `DefId`s. #[derive(Copy, Clone, PartialEq, Debug, Encodable, Decodable)] pub struct DisambiguatedDefPathData { pub data: DefPathData, pub disambiguator: u32, } impl DisambiguatedDefPathData { pub fn fmt_maybe_verbose(&self, writer: &mut impl Write, verbose: bool) -> fmt::Result { match self.data.name() { DefPathDataName::Named(name) => { if verbose && self.disambiguator != 0 { write!(writer, "{}#{}", name, self.disambiguator) } else { writer.write_str(name.as_str()) } } DefPathDataName::Anon { namespace } => { write!(writer, "{{{}#{}}}", namespace, self.disambiguator) } } } } impl fmt::Display for DisambiguatedDefPathData { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { self.fmt_maybe_verbose(f, true) } } #[derive(Clone, Debug, Encodable, Decodable)] pub struct DefPath { /// The path leading from the crate root to the item. pub data: Vec, /// The crate root this path is relative to. pub krate: CrateNum, } impl DefPath { pub fn make(krate: CrateNum, start_index: DefIndex, mut get_key: FN) -> DefPath where FN: FnMut(DefIndex) -> DefKey, { let mut data = vec![]; let mut index = Some(start_index); loop { debug!("DefPath::make: krate={:?} index={:?}", krate, index); let p = index.unwrap(); let key = get_key(p); debug!("DefPath::make: key={:?}", key); match key.disambiguated_data.data { DefPathData::CrateRoot => { assert!(key.parent.is_none()); break; } _ => { data.push(key.disambiguated_data); index = key.parent; } } } data.reverse(); DefPath { data, krate } } /// Returns a string representation of the `DefPath` without /// the crate-prefix. This method is useful if you don't have /// a `TyCtxt` available. pub fn to_string_no_crate_verbose(&self) -> String { let mut s = String::with_capacity(self.data.len() * 16); for component in &self.data { write!(s, "::{}", component).unwrap(); } s } /// Returns a filename-friendly string of the `DefPath`, without /// the crate-prefix. This method is useful if you don't have /// a `TyCtxt` available. pub fn to_filename_friendly_no_crate(&self) -> String { let mut s = String::with_capacity(self.data.len() * 16); let mut opt_delimiter = None; for component in &self.data { s.extend(opt_delimiter); opt_delimiter = Some('-'); write!(s, "{}", component).unwrap(); } s } } #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, Encodable, Decodable)] pub enum DefPathData { // Root: these should only be used for the root nodes, because // they are treated specially by the `def_path` function. /// The crate root (marker). CrateRoot, // Catch-all for random `DefId` things like `DUMMY_NODE_ID`. Misc, // Different kinds of items and item-like things: /// An impl. Impl, /// An `extern` block. ForeignMod, /// Something in the type namespace. TypeNs(Symbol), /// Something in the value namespace. ValueNs(Symbol), /// Something in the macro namespace. MacroNs(Symbol), /// Something in the lifetime namespace. LifetimeNs(Symbol), /// A closure expression. ClosureExpr, // Subportions of items: /// Implicit constructor for a unit or tuple-like struct or enum variant. Ctor, /// A constant expression (see `{ast,hir}::AnonConst`). AnonConst, /// An `impl Trait` type node. ImplTrait, } impl Definitions { pub fn def_path_table(&self) -> &DefPathTable { &self.table } /// Gets the number of definitions. pub fn def_index_count(&self) -> usize { self.table.index_to_key.len() } #[inline] pub fn def_key(&self, id: LocalDefId) -> DefKey { self.table.def_key(id.local_def_index) } #[inline(always)] pub fn def_path_hash(&self, id: LocalDefId) -> DefPathHash { self.table.def_path_hash(id.local_def_index) } /// Returns the path from the crate root to `index`. The root /// nodes are not included in the path (i.e., this will be an /// empty vector for the crate root). For an inlined item, this /// will be the path of the item in the external crate (but the /// path will begin with the path to the external crate). pub fn def_path(&self, id: LocalDefId) -> DefPath { DefPath::make(LOCAL_CRATE, id.local_def_index, |index| { self.def_key(LocalDefId { local_def_index: index }) }) } /// Adds a root definition (no parent) and a few other reserved definitions. pub fn new(stable_crate_id: StableCrateId, crate_span: Span) -> Definitions { let key = DefKey { parent: None, disambiguated_data: DisambiguatedDefPathData { data: DefPathData::CrateRoot, disambiguator: 0, }, }; let parent_hash = DefPathHash::new(stable_crate_id, 0); let def_path_hash = key.compute_stable_hash(parent_hash); // Create the root definition. let mut table = DefPathTable::default(); let root = LocalDefId { local_def_index: table.allocate(key, def_path_hash) }; assert_eq!(root.local_def_index, CRATE_DEF_INDEX); let mut def_id_to_span = IndexVec::new(); // A relative span's parent must be an absolute span. debug_assert_eq!(crate_span.data_untracked().parent, None); let _root = def_id_to_span.push(crate_span); debug_assert_eq!(_root, root); Definitions { table, next_disambiguator: Default::default(), expansions_that_defined: Default::default(), def_id_to_span, stable_crate_id, } } /// Retrieves the root definition. pub fn get_root_def(&self) -> LocalDefId { LocalDefId { local_def_index: CRATE_DEF_INDEX } } /// Adds a definition with a parent definition. pub fn create_def( &mut self, parent: LocalDefId, data: DefPathData, expn_id: ExpnId, span: Span, ) -> LocalDefId { debug!("create_def(parent={:?}, data={:?}, expn_id={:?})", parent, data, expn_id); // The root node must be created with `create_root_def()`. assert!(data != DefPathData::CrateRoot); // Find the next free disambiguator for this key. let disambiguator = { let next_disamb = self.next_disambiguator.entry((parent, data)).or_insert(0); let disambiguator = *next_disamb; *next_disamb = next_disamb.checked_add(1).expect("disambiguator overflow"); disambiguator }; let key = DefKey { parent: Some(parent.local_def_index), disambiguated_data: DisambiguatedDefPathData { data, disambiguator }, }; let parent_hash = self.table.def_path_hash(parent.local_def_index); let def_path_hash = key.compute_stable_hash(parent_hash); debug!("create_def: after disambiguation, key = {:?}", key); // Create the definition. let def_id = LocalDefId { local_def_index: self.table.allocate(key, def_path_hash) }; if expn_id != ExpnId::root() { self.expansions_that_defined.insert(def_id, expn_id); } // A relative span's parent must be an absolute span. debug_assert_eq!(span.data_untracked().parent, None); let _id = self.def_id_to_span.push(span); debug_assert_eq!(_id, def_id); def_id } pub fn expansion_that_defined(&self, id: LocalDefId) -> ExpnId { self.expansions_that_defined.get(&id).copied().unwrap_or_else(ExpnId::root) } /// Retrieves the span of the given `DefId` if `DefId` is in the local crate. #[inline] pub fn def_span(&self, def_id: LocalDefId) -> Span { self.def_id_to_span[def_id] } pub fn iter_local_def_id(&self) -> impl Iterator + '_ { self.table.def_path_hashes.indices().map(|local_def_index| LocalDefId { local_def_index }) } #[inline(always)] pub fn local_def_path_hash_to_def_id( &self, hash: DefPathHash, err: &mut dyn FnMut() -> !, ) -> LocalDefId { debug_assert!(hash.stable_crate_id() == self.stable_crate_id); self.table .def_path_hash_to_index .get(&hash) .map(|local_def_index| LocalDefId { local_def_index }) .unwrap_or_else(|| err()) } pub fn def_path_hash_to_def_index_map(&self) -> &DefPathHashMap { &self.table.def_path_hash_to_index } } #[derive(Copy, Clone, PartialEq, Debug)] pub enum DefPathDataName { Named(Symbol), Anon { namespace: Symbol }, } impl DefPathData { pub fn get_opt_name(&self) -> Option { use self::DefPathData::*; match *self { TypeNs(name) | ValueNs(name) | MacroNs(name) | LifetimeNs(name) => Some(name), Impl | ForeignMod | CrateRoot | Misc | ClosureExpr | Ctor | AnonConst | ImplTrait => { None } } } pub fn name(&self) -> DefPathDataName { use self::DefPathData::*; match *self { TypeNs(name) | ValueNs(name) | MacroNs(name) | LifetimeNs(name) => { DefPathDataName::Named(name) } // Note that this does not show up in user print-outs. CrateRoot => DefPathDataName::Anon { namespace: kw::Crate }, Impl => DefPathDataName::Anon { namespace: kw::Impl }, ForeignMod => DefPathDataName::Anon { namespace: kw::Extern }, Misc => DefPathDataName::Anon { namespace: sym::misc }, ClosureExpr => DefPathDataName::Anon { namespace: sym::closure }, Ctor => DefPathDataName::Anon { namespace: sym::constructor }, AnonConst => DefPathDataName::Anon { namespace: sym::constant }, ImplTrait => DefPathDataName::Anon { namespace: sym::opaque }, } } } impl fmt::Display for DefPathData { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self.name() { DefPathDataName::Named(name) => f.write_str(name.as_str()), // FIXME(#70334): this will generate legacy {{closure}}, {{impl}}, etc DefPathDataName::Anon { namespace } => write!(f, "{{{{{}}}}}", namespace), } } }