use syntax::ptr::P; use syntax::ast; use syntax::ast::*; use rustc::middle::ty; use rustc::lint::{Context, LintPass, LintArray, Lint, Level}; use syntax::codemap::{ExpnInfo, Span}; use utils::{in_macro, snippet, span_lint, span_help_and_lint}; /// Handles all the linting of funky types #[allow(missing_copy_implementations)] pub struct TypePass; declare_lint!(pub BOX_VEC, Warn, "usage of `Box>`, vector elements are already on the heap"); declare_lint!(pub LINKEDLIST, Warn, "usage of LinkedList, usually a vector is faster, or a more specialized data \ structure like a RingBuf"); /// Matches a type with a provided string, and returns its type parameters if successful pub fn match_ty_unwrap<'a>(ty: &'a Ty, segments: &[&str]) -> Option<&'a [P]> { match ty.node { TyPath(_, Path {segments: ref seg, ..}) => { // So ast::Path isn't the full path, just the tokens that were provided. // I could muck around with the maps and find the full path // however the more efficient way is to simply reverse the iterators and zip them // which will compare them in reverse until one of them runs out of segments if seg.iter().rev().zip(segments.iter().rev()).all(|(a,b)| a.identifier.name == b) { match seg[..].last() { Some(&PathSegment {parameters: AngleBracketedParameters(ref a), ..}) => { Some(&a.types[..]) } _ => None } } else { None } }, _ => None } } impl LintPass for TypePass { fn get_lints(&self) -> LintArray { lint_array!(BOX_VEC, LINKEDLIST) } fn check_ty(&mut self, cx: &Context, ty: &ast::Ty) { { // In case stuff gets moved around use std::boxed::Box; use std::vec::Vec; } match_ty_unwrap(ty, &["std", "boxed", "Box"]).and_then(|t| t.first()) .and_then(|t| match_ty_unwrap(&**t, &["std", "vec", "Vec"])) .map(|_| { span_help_and_lint(cx, BOX_VEC, ty.span, "you seem to be trying to use `Box>`. Did you mean to use `Vec`?", "`Vec` is already on the heap, `Box>` makes an extra allocation"); }); { // In case stuff gets moved around use collections::linked_list::LinkedList as DL1; use std::collections::linked_list::LinkedList as DL2; use std::collections::linked_list::LinkedList as DL3; } let dlists = [vec!["std","collections","linked_list","LinkedList"], vec!["std","collections","linked_list","LinkedList"], vec!["collections","linked_list","LinkedList"]]; for path in dlists.iter() { if match_ty_unwrap(ty, &path[..]).is_some() { span_help_and_lint(cx, LINKEDLIST, ty.span, "I see you're using a LinkedList! Perhaps you meant some other data structure?", "a RingBuf might work"); return; } } } } #[allow(missing_copy_implementations)] pub struct LetPass; declare_lint!(pub LET_UNIT_VALUE, Warn, "creating a let binding to a value of unit type, which usually can't be used afterwards"); fn check_let_unit(cx: &Context, decl: &Decl, info: Option<&ExpnInfo>) { if in_macro(cx, info) { return; } if let DeclLocal(ref local) = decl.node { let bindtype = &cx.tcx.pat_ty(&*local.pat).sty; if *bindtype == ty::TyTuple(vec![]) { span_lint(cx, LET_UNIT_VALUE, decl.span, &format!( "this let-binding has unit value. Consider omitting `let {} =`", snippet(cx, local.pat.span, ".."))); } } } impl LintPass for LetPass { fn get_lints(&self) -> LintArray { lint_array!(LET_UNIT_VALUE) } fn check_decl(&mut self, cx: &Context, decl: &Decl) { cx.sess().codemap().with_expn_info( decl.span.expn_id, |info| check_let_unit(cx, decl, info)); } }