// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use back::abi; use back::link::{mangle_internal_name_by_path_and_seq}; use lib::llvm::ValueRef; use middle::moves; use middle::trans::base::*; use middle::trans::build::*; use middle::trans::common::*; use middle::trans::datum::{Datum, INIT}; use middle::trans::debuginfo; use middle::trans::expr; use middle::trans::glue; use middle::trans::type_of::*; use middle::ty; use util::ppaux::ty_to_str; use std::vec; use syntax::ast; use syntax::ast_map::path_name; use syntax::ast_util; use syntax::parse::token::special_idents; // ___Good to know (tm)__________________________________________________ // // The layout of a closure environment in memory is // roughly as follows: // // struct rust_opaque_box { // see rust_internal.h // unsigned ref_count; // only used for @fn() // type_desc *tydesc; // describes closure_data struct // rust_opaque_box *prev; // (used internally by memory alloc) // rust_opaque_box *next; // (used internally by memory alloc) // struct closure_data { // type_desc *bound_tdescs[]; // bound descriptors // struct { // upvar1_t upvar1; // ... // upvarN_t upvarN; // } bound_data; // } // }; // // Note that the closure is itself a rust_opaque_box. This is true // even for ~fn and ||, because we wish to keep binary compatibility // between all kinds of closures. The allocation strategy for this // closure depends on the closure type. For a sendfn, the closure // (and the referenced type descriptors) will be allocated in the // exchange heap. For a fn, the closure is allocated in the task heap // and is reference counted. For a block, the closure is allocated on // the stack. // // ## Opaque closures and the embedded type descriptor ## // // One interesting part of closures is that they encapsulate the data // that they close over. So when I have a ptr to a closure, I do not // know how many type descriptors it contains nor what upvars are // captured within. That means I do not know precisely how big it is // nor where its fields are located. This is called an "opaque // closure". // // Typically an opaque closure suffices because we only manipulate it // by ptr. The routine Type::opaque_box().ptr_to() returns an // appropriate type for such an opaque closure; it allows access to // the box fields, but not the closure_data itself. // // But sometimes, such as when cloning or freeing a closure, we need // to know the full information. That is where the type descriptor // that defines the closure comes in handy. We can use its take and // drop glue functions to allocate/free data as needed. // // ## Subtleties concerning alignment ## // // It is important that we be able to locate the closure data *without // knowing the kind of data that is being bound*. This can be tricky // because the alignment requirements of the bound data affects the // alignment requires of the closure_data struct as a whole. However, // right now this is a non-issue in any case, because the size of the // rust_opaque_box header is always a mutiple of 16-bytes, which is // the maximum alignment requirement we ever have to worry about. // // The only reason alignment matters is that, in order to learn what data // is bound, we would normally first load the type descriptors: but their // location is ultimately depend on their content! There is, however, a // workaround. We can load the tydesc from the rust_opaque_box, which // describes the closure_data struct and has self-contained derived type // descriptors, and read the alignment from there. It's just annoying to // do. Hopefully should this ever become an issue we'll have monomorphized // and type descriptors will all be a bad dream. // // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ pub enum EnvAction { /// Copy the value from this llvm ValueRef into the environment. EnvCopy, /// Move the value from this llvm ValueRef into the environment. EnvMove, /// Access by reference (used for stack closures). EnvRef } pub struct EnvValue { action: EnvAction, datum: Datum } impl EnvAction { pub fn to_str(&self) -> ~str { match *self { EnvCopy => ~"EnvCopy", EnvMove => ~"EnvMove", EnvRef => ~"EnvRef" } } } impl EnvValue { pub fn to_str(&self, ccx: &CrateContext) -> ~str { format!("{}({})", self.action.to_str(), self.datum.to_str(ccx)) } } pub fn mk_tuplified_uniq_cbox_ty(tcx: ty::ctxt, cdata_ty: ty::t) -> ty::t { let cbox_ty = tuplify_box_ty(tcx, cdata_ty); return ty::mk_imm_uniq(tcx, cbox_ty); } // Given a closure ty, emits a corresponding tuple ty pub fn mk_closure_tys(tcx: ty::ctxt, bound_values: &[EnvValue]) -> ty::t { // determine the types of the values in the env. Note that this // is the actual types that will be stored in the map, not the // logical types as the user sees them, so by-ref upvars must be // converted to ptrs. let bound_tys = bound_values.map(|bv| { match bv.action { EnvCopy | EnvMove => bv.datum.ty, EnvRef => ty::mk_mut_ptr(tcx, bv.datum.ty) } }); let cdata_ty = ty::mk_tup(tcx, bound_tys); debug!("cdata_ty={}", ty_to_str(tcx, cdata_ty)); return cdata_ty; } fn heap_for_unique_closure(bcx: @mut Block, t: ty::t) -> heap { if ty::type_contents(bcx.tcx(), t).owns_managed() { heap_managed_unique } else { heap_exchange_closure } } pub fn allocate_cbox(bcx: @mut Block, sigil: ast::Sigil, cdata_ty: ty::t) -> Result { let _icx = push_ctxt("closure::allocate_cbox"); let ccx = bcx.ccx(); let tcx = ccx.tcx; // Allocate and initialize the box: match sigil { ast::ManagedSigil => { tcx.sess.bug("trying to trans allocation of @fn") } ast::OwnedSigil => { malloc_raw(bcx, cdata_ty, heap_for_unique_closure(bcx, cdata_ty)) } ast::BorrowedSigil => { let cbox_ty = tuplify_box_ty(tcx, cdata_ty); let llbox = alloc_ty(bcx, cbox_ty, "__closure"); rslt(bcx, llbox) } } } pub struct ClosureResult { llbox: ValueRef, // llvalue of ptr to closure cdata_ty: ty::t, // type of the closure data bcx: @mut Block // final bcx } // Given a block context and a list of tydescs and values to bind // construct a closure out of them. If copying is true, it is a // heap allocated closure that copies the upvars into environment. // Otherwise, it is stack allocated and copies pointers to the upvars. pub fn store_environment(bcx: @mut Block, bound_values: ~[EnvValue], sigil: ast::Sigil) -> ClosureResult { let _icx = push_ctxt("closure::store_environment"); let ccx = bcx.ccx(); let tcx = ccx.tcx; // compute the type of the closure let cdata_ty = mk_closure_tys(tcx, bound_values); // cbox_ty has the form of a tuple: (a, b, c) we want a ptr to a // tuple. This could be a ptr in uniq or a box or on stack, // whatever. let cbox_ty = tuplify_box_ty(tcx, cdata_ty); let cboxptr_ty = ty::mk_ptr(tcx, ty::mt {ty:cbox_ty, mutbl:ast::MutImmutable}); let llboxptr_ty = type_of(ccx, cboxptr_ty); // If there are no bound values, no point in allocating anything. if bound_values.is_empty() { return ClosureResult {llbox: C_null(llboxptr_ty), cdata_ty: cdata_ty, bcx: bcx}; } // allocate closure in the heap let Result {bcx: bcx, val: llbox} = allocate_cbox(bcx, sigil, cdata_ty); let llbox = PointerCast(bcx, llbox, llboxptr_ty); debug!("tuplify_box_ty = {}", ty_to_str(tcx, cbox_ty)); // Copy expr values into boxed bindings. let mut bcx = bcx; for (i, bv) in bound_values.iter().enumerate() { debug!("Copy {} into closure", bv.to_str(ccx)); if ccx.sess.asm_comments() { add_comment(bcx, format!("Copy {} into closure", bv.to_str(ccx))); } let bound_data = GEPi(bcx, llbox, [0u, abi::box_field_body, i]); match bv.action { EnvCopy => { bcx = bv.datum.copy_to(bcx, INIT, bound_data); } EnvMove => { bcx = bv.datum.move_to(bcx, INIT, bound_data); } EnvRef => { Store(bcx, bv.datum.to_ref_llval(bcx), bound_data); } } } ClosureResult { llbox: llbox, cdata_ty: cdata_ty, bcx: bcx } } // Given a context and a list of upvars, build a closure. This just // collects the upvars and packages them up for store_environment. pub fn build_closure(bcx0: @mut Block, cap_vars: &[moves::CaptureVar], sigil: ast::Sigil) -> ClosureResult { let _icx = push_ctxt("closure::build_closure"); // If we need to, package up the iterator body to call let bcx = bcx0; // Package up the captured upvars let mut env_vals = ~[]; for cap_var in cap_vars.iter() { debug!("Building closure: captured variable {:?}", *cap_var); let datum = expr::trans_local_var(bcx, cap_var.def); match cap_var.mode { moves::CapRef => { assert_eq!(sigil, ast::BorrowedSigil); env_vals.push(EnvValue {action: EnvRef, datum: datum}); } moves::CapCopy => { env_vals.push(EnvValue {action: EnvCopy, datum: datum}); } moves::CapMove => { env_vals.push(EnvValue {action: EnvMove, datum: datum}); } } } return store_environment(bcx, env_vals, sigil); } // Given an enclosing block context, a new function context, a closure type, // and a list of upvars, generate code to load and populate the environment // with the upvars and type descriptors. pub fn load_environment(fcx: @mut FunctionContext, cdata_ty: ty::t, cap_vars: &[moves::CaptureVar], sigil: ast::Sigil) { let _icx = push_ctxt("closure::load_environment"); // Don't bother to create the block if there's nothing to load if cap_vars.len() == 0 { return; } let bcx = fcx.entry_bcx.unwrap(); // Load a pointer to the closure data, skipping over the box header: let llcdata = opaque_box_body(bcx, cdata_ty, fcx.llenv); // Store the pointer to closure data in an alloca for debug info because that's what the // llvm.dbg.declare intrinsic expects let env_pointer_alloca = if fcx.ccx.sess.opts.extra_debuginfo { let alloc = alloc_ty(bcx, ty::mk_mut_ptr(bcx.tcx(), cdata_ty), "__debuginfo_env_ptr"); Store(bcx, llcdata, alloc); Some(alloc) } else { None }; // Populate the upvars from the environment let mut i = 0u; for cap_var in cap_vars.iter() { let mut upvarptr = GEPi(bcx, llcdata, [0u, i]); match sigil { ast::BorrowedSigil => { upvarptr = Load(bcx, upvarptr); } ast::ManagedSigil | ast::OwnedSigil => {} } let def_id = ast_util::def_id_of_def(cap_var.def); fcx.llupvars.insert(def_id.node, upvarptr); for &env_pointer_alloca in env_pointer_alloca.iter() { debuginfo::create_captured_var_metadata( bcx, def_id.node, cdata_ty, env_pointer_alloca, i, sigil, cap_var.span); } i += 1u; } } pub fn trans_expr_fn(bcx: @mut Block, sigil: ast::Sigil, decl: &ast::fn_decl, body: &ast::Block, outer_id: ast::NodeId, user_id: ast::NodeId, dest: expr::Dest) -> @mut Block { /*! * * Translates the body of a closure expression. * * - `sigil` * - `decl` * - `body` * - `outer_id`: The id of the closure expression with the correct * type. This is usually the same as `user_id`, but in the * case of a `for` loop, the `outer_id` will have the return * type of boolean, and the `user_id` will have the return type * of `nil`. * - `user_id`: The id of the closure as the user expressed it. Generally the same as `outer_id` * - `cap_clause`: information about captured variables, if any. * - `dest`: where to write the closure value, which must be a (fn ptr, env) pair */ let _icx = push_ctxt("closure::trans_expr_fn"); let dest_addr = match dest { expr::SaveIn(p) => p, expr::Ignore => { return bcx; // closure construction is non-side-effecting } }; let ccx = bcx.ccx(); let fty = node_id_type(bcx, outer_id); let f = match ty::get(fty).sty { ty::ty_closure(ref f) => f, _ => fail!("expected closure") }; let sub_path = vec::append_one(bcx.fcx.path.clone(), path_name(special_idents::anon)); // XXX: Bad copy. let s = mangle_internal_name_by_path_and_seq(ccx, sub_path.clone(), "expr_fn"); let llfn = decl_internal_rust_fn(ccx, f.sig.inputs, f.sig.output, s); // set an inline hint for all closures set_inline_hint(llfn); let Result {bcx: bcx, val: closure} = match sigil { ast::BorrowedSigil | ast::ManagedSigil | ast::OwnedSigil => { let cap_vars = ccx.maps.capture_map.get_copy(&user_id); let ClosureResult {llbox, cdata_ty, bcx} = build_closure(bcx, cap_vars, sigil); trans_closure(ccx, sub_path, decl, body, llfn, no_self, bcx.fcx.param_substs, user_id, [], ty::ty_fn_ret(fty), |fcx| load_environment(fcx, cdata_ty, cap_vars, sigil)); rslt(bcx, llbox) } }; fill_fn_pair(bcx, dest_addr, llfn, closure); return bcx; } pub fn make_closure_glue(cx: @mut Block, v: ValueRef, t: ty::t, glue_fn: |@mut Block, v: ValueRef, t: ty::t| -> @mut Block) -> @mut Block { let _icx = push_ctxt("closure::make_closure_glue"); let bcx = cx; let tcx = cx.tcx(); let sigil = ty::ty_closure_sigil(t); match sigil { ast::BorrowedSigil => bcx, ast::OwnedSigil | ast::ManagedSigil => { let box_cell_v = GEPi(cx, v, [0u, abi::fn_field_box]); let box_ptr_v = Load(cx, box_cell_v); do with_cond(cx, IsNotNull(cx, box_ptr_v)) |bcx| { let closure_ty = ty::mk_opaque_closure_ptr(tcx, sigil); glue_fn(bcx, box_cell_v, closure_ty) } } } } pub fn make_opaque_cbox_drop_glue( bcx: @mut Block, sigil: ast::Sigil, cboxptr: ValueRef) // ptr to the opaque closure -> @mut Block { let _icx = push_ctxt("closure::make_opaque_cbox_drop_glue"); match sigil { ast::BorrowedSigil => bcx, ast::ManagedSigil => { bcx.tcx().sess.bug("trying to trans drop glue of @fn") } ast::OwnedSigil => { glue::free_ty( bcx, cboxptr, ty::mk_opaque_closure_ptr(bcx.tcx(), sigil)) } } } pub fn make_opaque_cbox_free_glue( bcx: @mut Block, sigil: ast::Sigil, cbox: ValueRef) // ptr to ptr to the opaque closure -> @mut Block { let _icx = push_ctxt("closure::make_opaque_cbox_free_glue"); match sigil { ast::BorrowedSigil => { return bcx; } ast::ManagedSigil | ast::OwnedSigil => { /* hard cases: fallthrough to code below */ } } let ccx = bcx.ccx(); do with_cond(bcx, IsNotNull(bcx, cbox)) |bcx| { // Load the type descr found in the cbox let lltydescty = ccx.tydesc_type.ptr_to(); let cbox = Load(bcx, cbox); let tydescptr = GEPi(bcx, cbox, [0u, abi::box_field_tydesc]); let tydesc = Load(bcx, tydescptr); let tydesc = PointerCast(bcx, tydesc, lltydescty); // Drop the tuple data then free the descriptor let cdata = GEPi(bcx, cbox, [0u, abi::box_field_body]); glue::call_tydesc_glue_full(bcx, cdata, tydesc, abi::tydesc_field_drop_glue, None); // Free the ty descr (if necc) and the box itself glue::trans_exchange_free(bcx, cbox); bcx } }