use rustc::lint::*; use rustc::middle::const_eval::lookup_const_by_id; use rustc::middle::def::*; use rustc_front::hir::*; use rustc_front::util::is_comparison_binop; use syntax::codemap::Span; use syntax::ast::Lit_::*; use utils::span_lint; declare_lint! { pub BAD_BIT_MASK, Warn, "expressions of the form `_ & mask == select` that will only ever return `true` or `false` \ (because in the example `select` containing bits that `mask` doesn't have)" } declare_lint! { pub INEFFECTIVE_BIT_MASK, Warn, "expressions where a bit mask will be rendered useless by a comparison, e.g. `(x | 1) > 2`" } /// Checks for incompatible bit masks in comparisons, e.g. `x & 1 == 2`. /// This cannot work because the bit that makes up the value two was /// zeroed out by the bit-and with 1. So the formula for detecting if an /// expression of the type `_ m c` (where `` /// is one of {`&`, '|'} and `` is one of {`!=`, `>=`, `>` , /// `!=`, `>=`, `>`}) can be determined from the following table: /// /// |Comparison |Bit-Op|Example |is always|Formula | /// |------------|------|------------|---------|----------------------| /// |`==` or `!=`| `&` |`x & 2 == 3`|`false` |`c & m != c` | /// |`<` or `>=`| `&` |`x & 2 < 3` |`true` |`m < c` | /// |`>` or `<=`| `&` |`x & 1 > 1` |`false` |`m <= c` | /// |`==` or `!=`| `|` |`x | 1 == 0`|`false` |`c | m != c` | /// |`<` or `>=`| `|` |`x | 1 < 1` |`false` |`m >= c` | /// |`<=` or `>` | `|` |`x | 1 > 0` |`true` |`m > c` | /// /// This lint is **deny** by default /// /// There is also a lint that warns on ineffective masks that is *warn* /// by default. /// /// |Comparison|Bit-Op |Example |equals |Formula| /// |`>` / `<=`|`|` / `^`|`x | 2 > 3`|`x > 3`|`¹ && m <= c`| /// |`<` / `>=`|`|` / `^`|`x ^ 1 < 4`|`x < 4`|`¹ && m < c` | /// /// `¹ power_of_two(c + 1)` #[derive(Copy,Clone)] pub struct BitMask; impl LintPass for BitMask { fn get_lints(&self) -> LintArray { lint_array!(BAD_BIT_MASK, INEFFECTIVE_BIT_MASK) } } impl LateLintPass for BitMask { fn check_expr(&mut self, cx: &LateContext, e: &Expr) { if let ExprBinary(ref cmp, ref left, ref right) = e.node { if is_comparison_binop(cmp.node) { fetch_int_literal(cx, right).map_or_else(|| fetch_int_literal(cx, left).map_or((), |cmp_val| check_compare(cx, right, invert_cmp(cmp.node), cmp_val, &e.span)), |cmp_opt| check_compare(cx, left, cmp.node, cmp_opt, &e.span)) } } } } fn invert_cmp(cmp : BinOp_) -> BinOp_ { match cmp { BiEq => BiEq, BiNe => BiNe, BiLt => BiGt, BiGt => BiLt, BiLe => BiGe, BiGe => BiLe, _ => BiOr // Dummy } } fn check_compare(cx: &LateContext, bit_op: &Expr, cmp_op: BinOp_, cmp_value: u64, span: &Span) { if let ExprBinary(ref op, ref left, ref right) = bit_op.node { if op.node != BiBitAnd && op.node != BiBitOr { return; } fetch_int_literal(cx, right).or_else(|| fetch_int_literal( cx, left)).map_or((), |mask| check_bit_mask(cx, op.node, cmp_op, mask, cmp_value, span)) } } fn check_bit_mask(cx: &LateContext, bit_op: BinOp_, cmp_op: BinOp_, mask_value: u64, cmp_value: u64, span: &Span) { match cmp_op { BiEq | BiNe => match bit_op { BiBitAnd => if mask_value & cmp_value != cmp_value { if cmp_value != 0 { span_lint(cx, BAD_BIT_MASK, *span, &format!( "incompatible bit mask: `_ & {}` can never be equal to `{}`", mask_value, cmp_value)); } } else { if mask_value == 0 { span_lint(cx, BAD_BIT_MASK, *span, "&-masking with zero"); } }, BiBitOr => if mask_value | cmp_value != cmp_value { span_lint(cx, BAD_BIT_MASK, *span, &format!( "incompatible bit mask: `_ | {}` can never be equal to `{}`", mask_value, cmp_value)); }, _ => () }, BiLt | BiGe => match bit_op { BiBitAnd => if mask_value < cmp_value { span_lint(cx, BAD_BIT_MASK, *span, &format!( "incompatible bit mask: `_ & {}` will always be lower than `{}`", mask_value, cmp_value)); } else { if mask_value == 0 { span_lint(cx, BAD_BIT_MASK, *span, "&-masking with zero"); } }, BiBitOr => if mask_value >= cmp_value { span_lint(cx, BAD_BIT_MASK, *span, &format!( "incompatible bit mask: `_ | {}` will never be lower than `{}`", mask_value, cmp_value)); } else { check_ineffective_lt(cx, *span, mask_value, cmp_value, "|"); }, BiBitXor => check_ineffective_lt(cx, *span, mask_value, cmp_value, "^"), _ => () }, BiLe | BiGt => match bit_op { BiBitAnd => if mask_value <= cmp_value { span_lint(cx, BAD_BIT_MASK, *span, &format!( "incompatible bit mask: `_ & {}` will never be higher than `{}`", mask_value, cmp_value)); } else { if mask_value == 0 { span_lint(cx, BAD_BIT_MASK, *span, "&-masking with zero"); } }, BiBitOr => if mask_value > cmp_value { span_lint(cx, BAD_BIT_MASK, *span, &format!( "incompatible bit mask: `_ | {}` will always be higher than `{}`", mask_value, cmp_value)); } else { check_ineffective_gt(cx, *span, mask_value, cmp_value, "|"); }, BiBitXor => check_ineffective_gt(cx, *span, mask_value, cmp_value, "^"), _ => () }, _ => () } } fn check_ineffective_lt(cx: &LateContext, span: Span, m: u64, c: u64, op: &str) { if c.is_power_of_two() && m < c { span_lint(cx, INEFFECTIVE_BIT_MASK, span, &format!( "ineffective bit mask: `x {} {}` compared to `{}`, is the same as x compared directly", op, m, c)); } } fn check_ineffective_gt(cx: &LateContext, span: Span, m: u64, c: u64, op: &str) { if (c + 1).is_power_of_two() && m <= c { span_lint(cx, INEFFECTIVE_BIT_MASK, span, &format!( "ineffective bit mask: `x {} {}` compared to `{}`, is the same as x compared directly", op, m, c)); } } fn fetch_int_literal(cx: &LateContext, lit : &Expr) -> Option { match lit.node { ExprLit(ref lit_ptr) => { if let &LitInt(value, _) = &lit_ptr.node { Option::Some(value) //TODO: Handle sign } else { Option::None } } ExprPath(_, _) => { // Important to let the borrow expire before the const lookup to avoid double // borrowing. let def_map = cx.tcx.def_map.borrow(); match def_map.get(&lit.id) { Some(&PathResolution { base_def: DefConst(def_id), ..}) => Some(def_id), _ => None } } .and_then(|def_id| lookup_const_by_id(cx.tcx, def_id, Option::None)) .and_then(|l| fetch_int_literal(cx, l)), _ => Option::None } }