use crate::utils::{match_def_path, paths, span_lint, trait_ref_of_method, walk_ptrs_ty}; use rustc_hir as hir; use rustc_lint::{LateContext, LateLintPass}; use rustc_middle::ty::{Adt, Array, RawPtr, Ref, Slice, Tuple, Ty, TypeAndMut}; use rustc_session::{declare_lint_pass, declare_tool_lint}; use rustc_span::source_map::Span; declare_clippy_lint! { /// **What it does:** Checks for sets/maps with mutable key types. /// /// **Why is this bad?** All of `HashMap`, `HashSet`, `BTreeMap` and /// `BtreeSet` rely on either the hash or the order of keys be unchanging, /// so having types with interior mutability is a bad idea. /// /// **Known problems:** It's correct to use a struct, that contains interior mutability /// as a key, when its `Hash` implementation doesn't access any of the interior mutable types. /// However, this lint is unable to recognize this, so it causes a false positive in theses cases. /// The `bytes` crate is a great example of this. /// /// **Example:** /// ```rust /// use std::cmp::{PartialEq, Eq}; /// use std::collections::HashSet; /// use std::hash::{Hash, Hasher}; /// use std::sync::atomic::AtomicUsize; ///# #[allow(unused)] /// /// struct Bad(AtomicUsize); /// impl PartialEq for Bad { /// fn eq(&self, rhs: &Self) -> bool { /// .. /// ; unimplemented!(); /// } /// } /// /// impl Eq for Bad {} /// /// impl Hash for Bad { /// fn hash(&self, h: &mut H) { /// .. /// ; unimplemented!(); /// } /// } /// /// fn main() { /// let _: HashSet = HashSet::new(); /// } /// ``` pub MUTABLE_KEY_TYPE, correctness, "Check for mutable `Map`/`Set` key type" } declare_lint_pass!(MutableKeyType => [ MUTABLE_KEY_TYPE ]); impl<'tcx> LateLintPass<'tcx> for MutableKeyType { fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'tcx>) { if let hir::ItemKind::Fn(ref sig, ..) = item.kind { check_sig(cx, item.hir_id, &sig.decl); } } fn check_impl_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::ImplItem<'tcx>) { if let hir::ImplItemKind::Fn(ref sig, ..) = item.kind { if trait_ref_of_method(cx, item.hir_id).is_none() { check_sig(cx, item.hir_id, &sig.decl); } } } fn check_trait_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::TraitItem<'tcx>) { if let hir::TraitItemKind::Fn(ref sig, ..) = item.kind { check_sig(cx, item.hir_id, &sig.decl); } } fn check_local(&mut self, cx: &LateContext<'_>, local: &hir::Local<'_>) { if let hir::PatKind::Wild = local.pat.kind { return; } check_ty(cx, local.span, cx.typeck_results().pat_ty(&*local.pat)); } } fn check_sig<'tcx>(cx: &LateContext<'tcx>, item_hir_id: hir::HirId, decl: &hir::FnDecl<'_>) { let fn_def_id = cx.tcx.hir().local_def_id(item_hir_id); let fn_sig = cx.tcx.fn_sig(fn_def_id); for (hir_ty, ty) in decl.inputs.iter().zip(fn_sig.inputs().skip_binder().iter()) { check_ty(cx, hir_ty.span, ty); } check_ty( cx, decl.output.span(), cx.tcx.erase_late_bound_regions(&fn_sig.output()), ); } // We want to lint 1. sets or maps with 2. not immutable key types and 3. no unerased // generics (because the compiler cannot ensure immutability for unknown types). fn check_ty<'tcx>(cx: &LateContext<'tcx>, span: Span, ty: Ty<'tcx>) { let ty = walk_ptrs_ty(ty); if let Adt(def, substs) = ty.kind() { if [&paths::HASHMAP, &paths::BTREEMAP, &paths::HASHSET, &paths::BTREESET] .iter() .any(|path| match_def_path(cx, def.did, &**path)) && is_mutable_type(cx, substs.type_at(0), span) { span_lint(cx, MUTABLE_KEY_TYPE, span, "mutable key type"); } } } fn is_mutable_type<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>, span: Span) -> bool { match *ty.kind() { RawPtr(TypeAndMut { ty: inner_ty, mutbl }) | Ref(_, inner_ty, mutbl) => { mutbl == hir::Mutability::Mut || is_mutable_type(cx, inner_ty, span) }, Slice(inner_ty) => is_mutable_type(cx, inner_ty, span), Array(inner_ty, size) => { size.try_eval_usize(cx.tcx, cx.param_env).map_or(true, |u| u != 0) && is_mutable_type(cx, inner_ty, span) }, Tuple(..) => ty.tuple_fields().any(|ty| is_mutable_type(cx, ty, span)), Adt(..) => cx.tcx.layout_of(cx.param_env.and(ty)).is_ok() && !ty.is_freeze(cx.tcx.at(span), cx.param_env), _ => false, } }