// Copyright 2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your // option. This file may not be copied, modified, or distributed // except according to those terms. use fmt; use io::{self, Error, ErrorKind}; use net::{ToSocketAddrs, SocketAddr, Ipv4Addr, Ipv6Addr}; use sys_common::net as net_imp; use sys_common::{AsInner, FromInner, IntoInner}; use time::Duration; /// A UDP socket. /// /// After creating a `UdpSocket` by [`bind`]ing it to a socket address, data can be /// [sent to] and [received from] any other socket address. /// /// Although UDP is a connectionless protocol, this implementation provides an interface /// to set an address where data should be sent and received from. After setting a remote /// address with [`connect`], data can be sent to and received from that address with /// [`send`] and [`recv`]. /// /// As stated in the User Datagram Protocol's specification in [IETF RFC 768], UDP is /// an unordered, unreliable protocol; refer to [`TcpListener`] and [`TcpStream`] for TCP /// primitives. /// /// [`bind`]: #method.bind /// [`connect`]: #method.connect /// [IETF RFC 768]: https://tools.ietf.org/html/rfc768 /// [`recv`]: #method.recv /// [received from]: #method.recv_from /// [`send`]: #method.send /// [sent to]: #method.send_to /// [`TcpListener`]: ../../std/net/struct.TcpListener.html /// [`TcpStream`]: ../../std/net/struct.TcpStream.html /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// # fn foo() -> std::io::Result<()> { /// { /// let mut socket = UdpSocket::bind("127.0.0.1:34254")?; /// /// // read from the socket /// let mut buf = [0; 10]; /// let (amt, src) = socket.recv_from(&mut buf)?; /// /// // send a reply to the socket we received data from /// let buf = &mut buf[..amt]; /// buf.reverse(); /// socket.send_to(buf, &src)?; /// # Ok(()) /// } // the socket is closed here /// # } /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub struct UdpSocket(net_imp::UdpSocket); impl UdpSocket { /// Creates a UDP socket from the given address. /// /// The address type can be any implementor of [`ToSocketAddrs`] trait. See /// its documentation for concrete examples. /// /// [`ToSocketAddrs`]: ../../std/net/trait.ToSocketAddrs.html /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn bind<A: ToSocketAddrs>(addr: A) -> io::Result<UdpSocket> { super::each_addr(addr, net_imp::UdpSocket::bind).map(UdpSocket) } /// Receives data from the socket. On success, returns the number of bytes /// read and the address from whence the data came. /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// let mut buf = [0; 10]; /// let (number_of_bytes, src_addr) = socket.recv_from(&mut buf) /// .expect("Didn't receive data"); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> { self.0.recv_from(buf) } /// Receives data from the socket, without removing it from the queue. /// /// Successive calls return the same data. This is accomplished by passing /// `MSG_PEEK` as a flag to the underlying `recvfrom` system call. /// /// On success, returns the number of bytes peeked and the address from /// whence the data came. /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// let mut buf = [0; 10]; /// let (number_of_bytes, src_addr) = socket.peek_from(&mut buf) /// .expect("Didn't receive data"); /// ``` #[stable(feature = "peek", since = "1.18.0")] pub fn peek_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> { self.0.peek_from(buf) } /// Sends data on the socket to the given address. On success, returns the /// number of bytes written. /// /// Address type can be any implementor of [`ToSocketAddrs`] trait. See its /// documentation for concrete examples. /// /// This will return an error when the IP version of the local socket /// does not match that returned from [`ToSocketAddrs`]. /// /// See https://github.com/rust-lang/rust/issues/34202 for more details. /// /// [`ToSocketAddrs`]: ../../std/net/trait.ToSocketAddrs.html /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// socket.send_to(&[0; 10], "127.0.0.1:4242").expect("couldn't send data"); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn send_to<A: ToSocketAddrs>(&self, buf: &[u8], addr: A) -> io::Result<usize> { match addr.to_socket_addrs()?.next() { Some(addr) => self.0.send_to(buf, &addr), None => Err(Error::new(ErrorKind::InvalidInput, "no addresses to send data to")), } } /// Returns the socket address that this socket was created from. /// /// # Examples /// /// ```no_run /// use std::net::{Ipv4Addr, SocketAddr, SocketAddrV4, UdpSocket}; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// assert_eq!(socket.local_addr().unwrap(), /// SocketAddr::V4(SocketAddrV4::new(Ipv4Addr::new(127, 0, 0, 1), 34254))); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn local_addr(&self) -> io::Result<SocketAddr> { self.0.socket_addr() } /// Creates a new independently owned handle to the underlying socket. /// /// The returned `UdpSocket` is a reference to the same socket that this /// object references. Both handles will read and write the same port, and /// options set on one socket will be propagated to the other. /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// let socket_clone = socket.try_clone().expect("couldn't clone the socket"); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn try_clone(&self) -> io::Result<UdpSocket> { self.0.duplicate().map(UdpSocket) } /// Sets the read timeout to the timeout specified. /// /// If the value specified is [`None`], then [`read`] calls will block /// indefinitely. It is an error to pass the zero [`Duration`] to this /// method. /// /// # Note /// /// Platforms may return a different error code whenever a read times out as /// a result of setting this option. For example Unix typically returns an /// error of the kind [`WouldBlock`], but Windows may return [`TimedOut`]. /// /// [`None`]: ../../std/option/enum.Option.html#variant.None /// [`read`]: ../../std/io/trait.Read.html#tymethod.read /// [`Duration`]: ../../std/time/struct.Duration.html /// [`WouldBlock`]: ../../std/io/enum.ErrorKind.html#variant.WouldBlock /// [`TimedOut`]: ../../std/io/enum.ErrorKind.html#variant.TimedOut /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// socket.set_read_timeout(None).expect("set_read_timeout call failed"); /// ``` #[stable(feature = "socket_timeout", since = "1.4.0")] pub fn set_read_timeout(&self, dur: Option<Duration>) -> io::Result<()> { self.0.set_read_timeout(dur) } /// Sets the write timeout to the timeout specified. /// /// If the value specified is [`None`], then [`write`] calls will block /// indefinitely. It is an error to pass the zero [`Duration`] to this /// method. /// /// # Note /// /// Platforms may return a different error code whenever a write times out /// as a result of setting this option. For example Unix typically returns /// an error of the kind [`WouldBlock`], but Windows may return [`TimedOut`]. /// /// [`None`]: ../../std/option/enum.Option.html#variant.None /// [`write`]: ../../std/io/trait.Write.html#tymethod.write /// [`Duration`]: ../../std/time/struct.Duration.html /// [`WouldBlock`]: ../../std/io/enum.ErrorKind.html#variant.WouldBlock /// [`TimedOut`]: ../../std/io/enum.ErrorKind.html#variant.TimedOut /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// socket.set_write_timeout(None).expect("set_write_timeout call failed"); /// ``` #[stable(feature = "socket_timeout", since = "1.4.0")] pub fn set_write_timeout(&self, dur: Option<Duration>) -> io::Result<()> { self.0.set_write_timeout(dur) } /// Returns the read timeout of this socket. /// /// If the timeout is [`None`], then [`read`] calls will block indefinitely. /// /// [`None`]: ../../std/option/enum.Option.html#variant.None /// [`read`]: ../../std/io/trait.Read.html#tymethod.read /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// socket.set_read_timeout(None).expect("set_read_timeout call failed"); /// assert_eq!(socket.read_timeout().unwrap(), None); /// ``` #[stable(feature = "socket_timeout", since = "1.4.0")] pub fn read_timeout(&self) -> io::Result<Option<Duration>> { self.0.read_timeout() } /// Returns the write timeout of this socket. /// /// If the timeout is [`None`], then [`write`] calls will block indefinitely. /// /// [`None`]: ../../std/option/enum.Option.html#variant.None /// [`write`]: ../../std/io/trait.Write.html#tymethod.write /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// socket.set_write_timeout(None).expect("set_write_timeout call failed"); /// assert_eq!(socket.write_timeout().unwrap(), None); /// ``` #[stable(feature = "socket_timeout", since = "1.4.0")] pub fn write_timeout(&self) -> io::Result<Option<Duration>> { self.0.write_timeout() } /// Sets the value of the `SO_BROADCAST` option for this socket. /// /// When enabled, this socket is allowed to send packets to a broadcast /// address. /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// socket.set_broadcast(false).expect("set_broadcast call failed"); /// ``` #[stable(feature = "net2_mutators", since = "1.9.0")] pub fn set_broadcast(&self, broadcast: bool) -> io::Result<()> { self.0.set_broadcast(broadcast) } /// Gets the value of the `SO_BROADCAST` option for this socket. /// /// For more information about this option, see /// [`set_broadcast`][link]. /// /// [link]: #method.set_broadcast /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// socket.set_broadcast(false).expect("set_broadcast call failed"); /// assert_eq!(socket.broadcast().unwrap(), false); /// ``` #[stable(feature = "net2_mutators", since = "1.9.0")] pub fn broadcast(&self) -> io::Result<bool> { self.0.broadcast() } /// Sets the value of the `IP_MULTICAST_LOOP` option for this socket. /// /// If enabled, multicast packets will be looped back to the local socket. /// Note that this may not have any affect on IPv6 sockets. /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// socket.set_multicast_loop_v4(false).expect("set_multicast_loop_v4 call failed"); /// ``` #[stable(feature = "net2_mutators", since = "1.9.0")] pub fn set_multicast_loop_v4(&self, multicast_loop_v4: bool) -> io::Result<()> { self.0.set_multicast_loop_v4(multicast_loop_v4) } /// Gets the value of the `IP_MULTICAST_LOOP` option for this socket. /// /// For more information about this option, see /// [`set_multicast_loop_v4`][link]. /// /// [link]: #method.set_multicast_loop_v4 /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// socket.set_multicast_loop_v4(false).expect("set_multicast_loop_v4 call failed"); /// assert_eq!(socket.multicast_loop_v4().unwrap(), false); /// ``` #[stable(feature = "net2_mutators", since = "1.9.0")] pub fn multicast_loop_v4(&self) -> io::Result<bool> { self.0.multicast_loop_v4() } /// Sets the value of the `IP_MULTICAST_TTL` option for this socket. /// /// Indicates the time-to-live value of outgoing multicast packets for /// this socket. The default value is 1 which means that multicast packets /// don't leave the local network unless explicitly requested. /// /// Note that this may not have any affect on IPv6 sockets. /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// socket.set_multicast_ttl_v4(42).expect("set_multicast_ttl_v4 call failed"); /// ``` #[stable(feature = "net2_mutators", since = "1.9.0")] pub fn set_multicast_ttl_v4(&self, multicast_ttl_v4: u32) -> io::Result<()> { self.0.set_multicast_ttl_v4(multicast_ttl_v4) } /// Gets the value of the `IP_MULTICAST_TTL` option for this socket. /// /// For more information about this option, see /// [`set_multicast_ttl_v4`][link]. /// /// [link]: #method.set_multicast_ttl_v4 /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// socket.set_multicast_ttl_v4(42).expect("set_multicast_ttl_v4 call failed"); /// assert_eq!(socket.multicast_ttl_v4().unwrap(), 42); /// ``` #[stable(feature = "net2_mutators", since = "1.9.0")] pub fn multicast_ttl_v4(&self) -> io::Result<u32> { self.0.multicast_ttl_v4() } /// Sets the value of the `IPV6_MULTICAST_LOOP` option for this socket. /// /// Controls whether this socket sees the multicast packets it sends itself. /// Note that this may not have any affect on IPv4 sockets. /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// socket.set_multicast_loop_v6(false).expect("set_multicast_loop_v6 call failed"); /// ``` #[stable(feature = "net2_mutators", since = "1.9.0")] pub fn set_multicast_loop_v6(&self, multicast_loop_v6: bool) -> io::Result<()> { self.0.set_multicast_loop_v6(multicast_loop_v6) } /// Gets the value of the `IPV6_MULTICAST_LOOP` option for this socket. /// /// For more information about this option, see /// [`set_multicast_loop_v6`][link]. /// /// [link]: #method.set_multicast_loop_v6 /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// socket.set_multicast_loop_v6(false).expect("set_multicast_loop_v6 call failed"); /// assert_eq!(socket.multicast_loop_v6().unwrap(), false); /// ``` #[stable(feature = "net2_mutators", since = "1.9.0")] pub fn multicast_loop_v6(&self) -> io::Result<bool> { self.0.multicast_loop_v6() } /// Sets the value for the `IP_TTL` option on this socket. /// /// This value sets the time-to-live field that is used in every packet sent /// from this socket. /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// socket.set_ttl(42).expect("set_ttl call failed"); /// ``` #[stable(feature = "net2_mutators", since = "1.9.0")] pub fn set_ttl(&self, ttl: u32) -> io::Result<()> { self.0.set_ttl(ttl) } /// Gets the value of the `IP_TTL` option for this socket. /// /// For more information about this option, see [`set_ttl`][link]. /// /// [link]: #method.set_ttl /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// socket.set_ttl(42).expect("set_ttl call failed"); /// assert_eq!(socket.ttl().unwrap(), 42); /// ``` #[stable(feature = "net2_mutators", since = "1.9.0")] pub fn ttl(&self) -> io::Result<u32> { self.0.ttl() } /// Executes an operation of the `IP_ADD_MEMBERSHIP` type. /// /// This function specifies a new multicast group for this socket to join. /// The address must be a valid multicast address, and `interface` is the /// address of the local interface with which the system should join the /// multicast group. If it's equal to `INADDR_ANY` then an appropriate /// interface is chosen by the system. #[stable(feature = "net2_mutators", since = "1.9.0")] pub fn join_multicast_v4(&self, multiaddr: &Ipv4Addr, interface: &Ipv4Addr) -> io::Result<()> { self.0.join_multicast_v4(multiaddr, interface) } /// Executes an operation of the `IPV6_ADD_MEMBERSHIP` type. /// /// This function specifies a new multicast group for this socket to join. /// The address must be a valid multicast address, and `interface` is the /// index of the interface to join/leave (or 0 to indicate any interface). #[stable(feature = "net2_mutators", since = "1.9.0")] pub fn join_multicast_v6(&self, multiaddr: &Ipv6Addr, interface: u32) -> io::Result<()> { self.0.join_multicast_v6(multiaddr, interface) } /// Executes an operation of the `IP_DROP_MEMBERSHIP` type. /// /// For more information about this option, see /// [`join_multicast_v4`][link]. /// /// [link]: #method.join_multicast_v4 #[stable(feature = "net2_mutators", since = "1.9.0")] pub fn leave_multicast_v4(&self, multiaddr: &Ipv4Addr, interface: &Ipv4Addr) -> io::Result<()> { self.0.leave_multicast_v4(multiaddr, interface) } /// Executes an operation of the `IPV6_DROP_MEMBERSHIP` type. /// /// For more information about this option, see /// [`join_multicast_v6`][link]. /// /// [link]: #method.join_multicast_v6 #[stable(feature = "net2_mutators", since = "1.9.0")] pub fn leave_multicast_v6(&self, multiaddr: &Ipv6Addr, interface: u32) -> io::Result<()> { self.0.leave_multicast_v6(multiaddr, interface) } /// Get the value of the `SO_ERROR` option on this socket. /// /// This will retrieve the stored error in the underlying socket, clearing /// the field in the process. This can be useful for checking errors between /// calls. /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// match socket.take_error() { /// Ok(Some(error)) => println!("UdpSocket error: {:?}", error), /// Ok(None) => println!("No error"), /// Err(error) => println!("UdpSocket.take_error failed: {:?}", error), /// } /// ``` #[stable(feature = "net2_mutators", since = "1.9.0")] pub fn take_error(&self) -> io::Result<Option<io::Error>> { self.0.take_error() } /// Connects this UDP socket to a remote address, allowing the `send` and /// `recv` syscalls to be used to send data and also applies filters to only /// receive data from the specified address. /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// socket.connect("127.0.0.1:8080").expect("connect function failed"); /// ``` #[stable(feature = "net2_mutators", since = "1.9.0")] pub fn connect<A: ToSocketAddrs>(&self, addr: A) -> io::Result<()> { super::each_addr(addr, |addr| self.0.connect(addr)) } /// Sends data on the socket to the remote address to which it is connected. /// /// The [`connect`] method will connect this socket to a remote address. This /// method will fail if the socket is not connected. /// /// [`connect`]: #method.connect /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// socket.connect("127.0.0.1:8080").expect("connect function failed"); /// socket.send(&[0, 1, 2]).expect("couldn't send message"); /// ``` #[stable(feature = "net2_mutators", since = "1.9.0")] pub fn send(&self, buf: &[u8]) -> io::Result<usize> { self.0.send(buf) } /// Receives data on the socket from the remote address to which it is /// connected. /// /// The [`connect`] method will connect this socket to a remote address. This /// method will fail if the socket is not connected. /// /// [`connect`]: #method.connect /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// socket.connect("127.0.0.1:8080").expect("connect function failed"); /// let mut buf = [0; 10]; /// match socket.recv(&mut buf) { /// Ok(received) => println!("received {} bytes", received), /// Err(e) => println!("recv function failed: {:?}", e), /// } /// ``` #[stable(feature = "net2_mutators", since = "1.9.0")] pub fn recv(&self, buf: &mut [u8]) -> io::Result<usize> { self.0.recv(buf) } /// Receives data on the socket from the remote address to which it is /// connected, without removing that data from the queue. On success, /// returns the number of bytes peeked. /// /// Successive calls return the same data. This is accomplished by passing /// `MSG_PEEK` as a flag to the underlying `recv` system call. /// /// # Errors /// /// This method will fail if the socket is not connected. The `connect` method /// will connect this socket to a remote address. /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// socket.connect("127.0.0.1:8080").expect("connect function failed"); /// let mut buf = [0; 10]; /// match socket.peek(&mut buf) { /// Ok(received) => println!("received {} bytes", received), /// Err(e) => println!("peek function failed: {:?}", e), /// } /// ``` #[stable(feature = "peek", since = "1.18.0")] pub fn peek(&self, buf: &mut [u8]) -> io::Result<usize> { self.0.peek(buf) } /// Moves this UDP socket into or out of nonblocking mode. /// /// On Unix this corresponds to calling fcntl, and on Windows this /// corresponds to calling ioctlsocket. /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// socket.set_nonblocking(true).expect("set_nonblocking call failed"); /// ``` #[stable(feature = "net2_mutators", since = "1.9.0")] pub fn set_nonblocking(&self, nonblocking: bool) -> io::Result<()> { self.0.set_nonblocking(nonblocking) } } impl AsInner<net_imp::UdpSocket> for UdpSocket { fn as_inner(&self) -> &net_imp::UdpSocket { &self.0 } } impl FromInner<net_imp::UdpSocket> for UdpSocket { fn from_inner(inner: net_imp::UdpSocket) -> UdpSocket { UdpSocket(inner) } } impl IntoInner<net_imp::UdpSocket> for UdpSocket { fn into_inner(self) -> net_imp::UdpSocket { self.0 } } #[stable(feature = "rust1", since = "1.0.0")] impl fmt::Debug for UdpSocket { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.0.fmt(f) } } #[cfg(all(test, not(target_os = "emscripten")))] mod tests { use io::ErrorKind; use net::*; use net::test::{next_test_ip4, next_test_ip6}; use sync::mpsc::channel; use sys_common::AsInner; use time::{Instant, Duration}; use thread; fn each_ip(f: &mut FnMut(SocketAddr, SocketAddr)) { f(next_test_ip4(), next_test_ip4()); f(next_test_ip6(), next_test_ip6()); } macro_rules! t { ($e:expr) => { match $e { Ok(t) => t, Err(e) => panic!("received error for `{}`: {}", stringify!($e), e), } } } #[test] fn bind_error() { match UdpSocket::bind("1.1.1.1:9999") { Ok(..) => panic!(), Err(e) => { assert_eq!(e.kind(), ErrorKind::AddrNotAvailable) } } } #[test] fn socket_smoke_test_ip4() { each_ip(&mut |server_ip, client_ip| { let (tx1, rx1) = channel(); let (tx2, rx2) = channel(); let _t = thread::spawn(move|| { let client = t!(UdpSocket::bind(&client_ip)); rx1.recv().unwrap(); t!(client.send_to(&[99], &server_ip)); tx2.send(()).unwrap(); }); let server = t!(UdpSocket::bind(&server_ip)); tx1.send(()).unwrap(); let mut buf = [0]; let (nread, src) = t!(server.recv_from(&mut buf)); assert_eq!(nread, 1); assert_eq!(buf[0], 99); assert_eq!(src, client_ip); rx2.recv().unwrap(); }) } #[test] fn socket_name_ip4() { each_ip(&mut |addr, _| { let server = t!(UdpSocket::bind(&addr)); assert_eq!(addr, t!(server.local_addr())); }) } #[test] fn udp_clone_smoke() { each_ip(&mut |addr1, addr2| { let sock1 = t!(UdpSocket::bind(&addr1)); let sock2 = t!(UdpSocket::bind(&addr2)); let _t = thread::spawn(move|| { let mut buf = [0, 0]; assert_eq!(sock2.recv_from(&mut buf).unwrap(), (1, addr1)); assert_eq!(buf[0], 1); t!(sock2.send_to(&[2], &addr1)); }); let sock3 = t!(sock1.try_clone()); let (tx1, rx1) = channel(); let (tx2, rx2) = channel(); let _t = thread::spawn(move|| { rx1.recv().unwrap(); t!(sock3.send_to(&[1], &addr2)); tx2.send(()).unwrap(); }); tx1.send(()).unwrap(); let mut buf = [0, 0]; assert_eq!(sock1.recv_from(&mut buf).unwrap(), (1, addr2)); rx2.recv().unwrap(); }) } #[test] fn udp_clone_two_read() { each_ip(&mut |addr1, addr2| { let sock1 = t!(UdpSocket::bind(&addr1)); let sock2 = t!(UdpSocket::bind(&addr2)); let (tx1, rx) = channel(); let tx2 = tx1.clone(); let _t = thread::spawn(move|| { t!(sock2.send_to(&[1], &addr1)); rx.recv().unwrap(); t!(sock2.send_to(&[2], &addr1)); rx.recv().unwrap(); }); let sock3 = t!(sock1.try_clone()); let (done, rx) = channel(); let _t = thread::spawn(move|| { let mut buf = [0, 0]; t!(sock3.recv_from(&mut buf)); tx2.send(()).unwrap(); done.send(()).unwrap(); }); let mut buf = [0, 0]; t!(sock1.recv_from(&mut buf)); tx1.send(()).unwrap(); rx.recv().unwrap(); }) } #[test] fn udp_clone_two_write() { each_ip(&mut |addr1, addr2| { let sock1 = t!(UdpSocket::bind(&addr1)); let sock2 = t!(UdpSocket::bind(&addr2)); let (tx, rx) = channel(); let (serv_tx, serv_rx) = channel(); let _t = thread::spawn(move|| { let mut buf = [0, 1]; rx.recv().unwrap(); t!(sock2.recv_from(&mut buf)); serv_tx.send(()).unwrap(); }); let sock3 = t!(sock1.try_clone()); let (done, rx) = channel(); let tx2 = tx.clone(); let _t = thread::spawn(move|| { match sock3.send_to(&[1], &addr2) { Ok(..) => { let _ = tx2.send(()); } Err(..) => {} } done.send(()).unwrap(); }); match sock1.send_to(&[2], &addr2) { Ok(..) => { let _ = tx.send(()); } Err(..) => {} } drop(tx); rx.recv().unwrap(); serv_rx.recv().unwrap(); }) } #[test] fn debug() { let name = if cfg!(windows) {"socket"} else {"fd"}; let socket_addr = next_test_ip4(); let udpsock = t!(UdpSocket::bind(&socket_addr)); let udpsock_inner = udpsock.0.socket().as_inner(); let compare = format!("UdpSocket {{ addr: {:?}, {}: {:?} }}", socket_addr, name, udpsock_inner); assert_eq!(format!("{:?}", udpsock), compare); } // FIXME: re-enabled bitrig/openbsd/netbsd tests once their socket timeout code // no longer has rounding errors. #[cfg_attr(any(target_os = "bitrig", target_os = "netbsd", target_os = "openbsd"), ignore)] #[test] fn timeouts() { let addr = next_test_ip4(); let stream = t!(UdpSocket::bind(&addr)); let dur = Duration::new(15410, 0); assert_eq!(None, t!(stream.read_timeout())); t!(stream.set_read_timeout(Some(dur))); assert_eq!(Some(dur), t!(stream.read_timeout())); assert_eq!(None, t!(stream.write_timeout())); t!(stream.set_write_timeout(Some(dur))); assert_eq!(Some(dur), t!(stream.write_timeout())); t!(stream.set_read_timeout(None)); assert_eq!(None, t!(stream.read_timeout())); t!(stream.set_write_timeout(None)); assert_eq!(None, t!(stream.write_timeout())); } #[test] fn test_read_timeout() { let addr = next_test_ip4(); let stream = t!(UdpSocket::bind(&addr)); t!(stream.set_read_timeout(Some(Duration::from_millis(1000)))); let mut buf = [0; 10]; let start = Instant::now(); let kind = stream.recv_from(&mut buf).err().expect("expected error").kind(); assert!(kind == ErrorKind::WouldBlock || kind == ErrorKind::TimedOut); assert!(start.elapsed() > Duration::from_millis(400)); } #[test] fn test_read_with_timeout() { let addr = next_test_ip4(); let stream = t!(UdpSocket::bind(&addr)); t!(stream.set_read_timeout(Some(Duration::from_millis(1000)))); t!(stream.send_to(b"hello world", &addr)); let mut buf = [0; 11]; t!(stream.recv_from(&mut buf)); assert_eq!(b"hello world", &buf[..]); let start = Instant::now(); let kind = stream.recv_from(&mut buf).err().expect("expected error").kind(); assert!(kind == ErrorKind::WouldBlock || kind == ErrorKind::TimedOut); assert!(start.elapsed() > Duration::from_millis(400)); } #[test] fn connect_send_recv() { let addr = next_test_ip4(); let socket = t!(UdpSocket::bind(&addr)); t!(socket.connect(addr)); t!(socket.send(b"hello world")); let mut buf = [0; 11]; t!(socket.recv(&mut buf)); assert_eq!(b"hello world", &buf[..]); } #[test] fn connect_send_peek_recv() { each_ip(&mut |addr, _| { let socket = t!(UdpSocket::bind(&addr)); t!(socket.connect(addr)); t!(socket.send(b"hello world")); for _ in 1..3 { let mut buf = [0; 11]; let size = t!(socket.peek(&mut buf)); assert_eq!(b"hello world", &buf[..]); assert_eq!(size, 11); } let mut buf = [0; 11]; let size = t!(socket.recv(&mut buf)); assert_eq!(b"hello world", &buf[..]); assert_eq!(size, 11); }) } #[test] fn peek_from() { each_ip(&mut |addr, _| { let socket = t!(UdpSocket::bind(&addr)); t!(socket.send_to(b"hello world", &addr)); for _ in 1..3 { let mut buf = [0; 11]; let (size, _) = t!(socket.peek_from(&mut buf)); assert_eq!(b"hello world", &buf[..]); assert_eq!(size, 11); } let mut buf = [0; 11]; let (size, _) = t!(socket.recv_from(&mut buf)); assert_eq!(b"hello world", &buf[..]); assert_eq!(size, 11); }) } #[test] fn ttl() { let ttl = 100; let addr = next_test_ip4(); let stream = t!(UdpSocket::bind(&addr)); t!(stream.set_ttl(ttl)); assert_eq!(ttl, t!(stream.ttl())); } #[test] fn set_nonblocking() { each_ip(&mut |addr, _| { let socket = t!(UdpSocket::bind(&addr)); t!(socket.set_nonblocking(true)); t!(socket.set_nonblocking(false)); t!(socket.connect(addr)); t!(socket.set_nonblocking(false)); t!(socket.set_nonblocking(true)); let mut buf = [0]; match socket.recv(&mut buf) { Ok(_) => panic!("expected error"), Err(ref e) if e.kind() == ErrorKind::WouldBlock => {} Err(e) => panic!("unexpected error {}", e), } }) } }