use clippy_utils::diagnostics::{span_lint, span_lint_and_sugg, span_lint_hir_and_then}; use clippy_utils::source::{snippet, snippet_opt, snippet_with_context}; use if_chain::if_chain; use rustc_errors::Applicability; use rustc_hir::intravisit::FnKind; use rustc_hir::{ self as hir, def, BinOpKind, BindingAnnotation, Body, ByRef, Expr, ExprKind, FnDecl, Mutability, PatKind, Stmt, StmtKind, TyKind, }; use rustc_lint::{LateContext, LateLintPass}; use rustc_middle::lint::in_external_macro; use rustc_session::{declare_tool_lint, impl_lint_pass}; use rustc_span::def_id::LocalDefId; use rustc_span::hygiene::DesugaringKind; use rustc_span::source_map::{ExpnKind, Span}; use clippy_utils::sugg::Sugg; use clippy_utils::{ get_parent_expr, in_constant, is_integer_literal, is_lint_allowed, is_no_std_crate, iter_input_pats, last_path_segment, SpanlessEq, }; use crate::ref_patterns::REF_PATTERNS; declare_clippy_lint! { /// ### What it does /// Checks for function arguments and let bindings denoted as /// `ref`. /// /// ### Why is this bad? /// The `ref` declaration makes the function take an owned /// value, but turns the argument into a reference (which means that the value /// is destroyed when exiting the function). This adds not much value: either /// take a reference type, or take an owned value and create references in the /// body. /// /// For let bindings, `let x = &foo;` is preferred over `let ref x = foo`. The /// type of `x` is more obvious with the former. /// /// ### Known problems /// If the argument is dereferenced within the function, /// removing the `ref` will lead to errors. This can be fixed by removing the /// dereferences, e.g., changing `*x` to `x` within the function. /// /// ### Example /// ```rust /// fn foo(ref _x: u8) {} /// ``` /// /// Use instead: /// ```rust /// fn foo(_x: &u8) {} /// ``` #[clippy::version = "pre 1.29.0"] pub TOPLEVEL_REF_ARG, style, "an entire binding declared as `ref`, in a function argument or a `let` statement" } declare_clippy_lint! { /// ### What it does /// Checks for the use of bindings with a single leading /// underscore. /// /// ### Why is this bad? /// A single leading underscore is usually used to indicate /// that a binding will not be used. Using such a binding breaks this /// expectation. /// /// ### Known problems /// The lint does not work properly with desugaring and /// macro, it has been allowed in the mean time. /// /// ### Example /// ```rust /// let _x = 0; /// let y = _x + 1; // Here we are using `_x`, even though it has a leading /// // underscore. We should rename `_x` to `x` /// ``` #[clippy::version = "pre 1.29.0"] pub USED_UNDERSCORE_BINDING, pedantic, "using a binding which is prefixed with an underscore" } declare_clippy_lint! { /// ### What it does /// Checks for the use of short circuit boolean conditions as /// a /// statement. /// /// ### Why is this bad? /// Using a short circuit boolean condition as a statement /// may hide the fact that the second part is executed or not depending on the /// outcome of the first part. /// /// ### Example /// ```rust,ignore /// f() && g(); // We should write `if f() { g(); }`. /// ``` #[clippy::version = "pre 1.29.0"] pub SHORT_CIRCUIT_STATEMENT, complexity, "using a short circuit boolean condition as a statement" } declare_clippy_lint! { /// ### What it does /// Catch casts from `0` to some pointer type /// /// ### Why is this bad? /// This generally means `null` and is better expressed as /// {`std`, `core`}`::ptr::`{`null`, `null_mut`}. /// /// ### Example /// ```rust /// let a = 0 as *const u32; /// ``` /// /// Use instead: /// ```rust /// let a = std::ptr::null::(); /// ``` #[clippy::version = "pre 1.29.0"] pub ZERO_PTR, style, "using `0 as *{const, mut} T`" } pub struct LintPass { std_or_core: &'static str, } impl Default for LintPass { fn default() -> Self { Self { std_or_core: "std" } } } impl_lint_pass!(LintPass => [ TOPLEVEL_REF_ARG, USED_UNDERSCORE_BINDING, SHORT_CIRCUIT_STATEMENT, ZERO_PTR, ]); impl<'tcx> LateLintPass<'tcx> for LintPass { fn check_crate(&mut self, cx: &LateContext<'_>) { if is_no_std_crate(cx) { self.std_or_core = "core"; } } fn check_fn( &mut self, cx: &LateContext<'tcx>, k: FnKind<'tcx>, decl: &'tcx FnDecl<'_>, body: &'tcx Body<'_>, span: Span, _: LocalDefId, ) { if let FnKind::Closure = k { // Does not apply to closures return; } if in_external_macro(cx.tcx.sess, span) { return; } for arg in iter_input_pats(decl, body) { // Do not emit if clippy::ref_patterns is not allowed to avoid having two lints for the same issue. if !is_lint_allowed(cx, REF_PATTERNS, arg.pat.hir_id) { return; } if let PatKind::Binding(BindingAnnotation(ByRef::Yes, _), ..) = arg.pat.kind { span_lint( cx, TOPLEVEL_REF_ARG, arg.pat.span, "`ref` directly on a function argument is ignored. \ Consider using a reference type instead", ); } } } fn check_stmt(&mut self, cx: &LateContext<'tcx>, stmt: &'tcx Stmt<'_>) { if_chain! { if !in_external_macro(cx.tcx.sess, stmt.span); if let StmtKind::Local(local) = stmt.kind; if let PatKind::Binding(BindingAnnotation(ByRef::Yes, mutabl), .., name, None) = local.pat.kind; if let Some(init) = local.init; // Do not emit if clippy::ref_patterns is not allowed to avoid having two lints for the same issue. if is_lint_allowed(cx, REF_PATTERNS, local.pat.hir_id); then { let ctxt = local.span.ctxt(); let mut app = Applicability::MachineApplicable; let sugg_init = Sugg::hir_with_context(cx, init, ctxt, "..", &mut app); let (mutopt, initref) = if mutabl == Mutability::Mut { ("mut ", sugg_init.mut_addr()) } else { ("", sugg_init.addr()) }; let tyopt = if let Some(ty) = local.ty { let ty_snip = snippet_with_context(cx, ty.span, ctxt, "_", &mut app).0; format!(": &{mutopt}{ty_snip}") } else { String::new() }; span_lint_hir_and_then( cx, TOPLEVEL_REF_ARG, init.hir_id, local.pat.span, "`ref` on an entire `let` pattern is discouraged, take a reference with `&` instead", |diag| { diag.span_suggestion( stmt.span, "try", format!( "let {name}{tyopt} = {initref};", name=snippet(cx, name.span, ".."), ), app, ); } ); } }; if_chain! { if let StmtKind::Semi(expr) = stmt.kind; if let ExprKind::Binary(ref binop, a, b) = expr.kind; if binop.node == BinOpKind::And || binop.node == BinOpKind::Or; if let Some(sugg) = Sugg::hir_opt(cx, a); then { span_lint_hir_and_then( cx, SHORT_CIRCUIT_STATEMENT, expr.hir_id, stmt.span, "boolean short circuit operator in statement may be clearer using an explicit test", |diag| { let sugg = if binop.node == BinOpKind::Or { !sugg } else { sugg }; diag.span_suggestion( stmt.span, "replace it with", format!( "if {sugg} {{ {}; }}", &snippet(cx, b.span, ".."), ), Applicability::MachineApplicable, // snippet ); }); } }; } fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) { if let ExprKind::Cast(e, ty) = expr.kind { self.check_cast(cx, expr.span, e, ty); return; } if in_attributes_expansion(expr) || expr.span.is_desugaring(DesugaringKind::Await) { // Don't lint things expanded by #[derive(...)], etc or `await` desugaring return; } let sym; let binding = match expr.kind { ExprKind::Path(ref qpath) if !matches!(qpath, hir::QPath::LangItem(..)) => { let binding = last_path_segment(qpath).ident.as_str(); if binding.starts_with('_') && !binding.starts_with("__") && binding != "_result" && // FIXME: #944 is_used(cx, expr) && // don't lint if the declaration is in a macro non_macro_local(cx, cx.qpath_res(qpath, expr.hir_id)) { Some(binding) } else { None } }, ExprKind::Field(_, ident) => { sym = ident.name; let name = sym.as_str(); if name.starts_with('_') && !name.starts_with("__") { Some(name) } else { None } }, _ => None, }; if let Some(binding) = binding { span_lint( cx, USED_UNDERSCORE_BINDING, expr.span, &format!( "used binding `{binding}` which is prefixed with an underscore. A leading \ underscore signals that a binding will not be used" ), ); } } } /// Heuristic to see if an expression is used. Should be compatible with /// `unused_variables`'s idea /// of what it means for an expression to be "used". fn is_used(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool { get_parent_expr(cx, expr).map_or(true, |parent| match parent.kind { ExprKind::Assign(_, rhs, _) | ExprKind::AssignOp(_, _, rhs) => SpanlessEq::new(cx).eq_expr(rhs, expr), _ => is_used(cx, parent), }) } /// Tests whether an expression is in a macro expansion (e.g., something /// generated by `#[derive(...)]` or the like). fn in_attributes_expansion(expr: &Expr<'_>) -> bool { use rustc_span::hygiene::MacroKind; if expr.span.from_expansion() { let data = expr.span.ctxt().outer_expn_data(); matches!(data.kind, ExpnKind::Macro(MacroKind::Attr | MacroKind::Derive, _)) } else { false } } /// Tests whether `res` is a variable defined outside a macro. fn non_macro_local(cx: &LateContext<'_>, res: def::Res) -> bool { if let def::Res::Local(id) = res { !cx.tcx.hir().span(id).from_expansion() } else { false } } impl LintPass { fn check_cast(&self, cx: &LateContext<'_>, span: Span, e: &Expr<'_>, ty: &hir::Ty<'_>) { if_chain! { if let TyKind::Ptr(ref mut_ty) = ty.kind; if is_integer_literal(e, 0); if !in_constant(cx, e.hir_id); then { let (msg, sugg_fn) = match mut_ty.mutbl { Mutability::Mut => ("`0 as *mut _` detected", "ptr::null_mut"), Mutability::Not => ("`0 as *const _` detected", "ptr::null"), }; let (sugg, appl) = if let TyKind::Infer = mut_ty.ty.kind { (format!("{}::{sugg_fn}()", self.std_or_core), Applicability::MachineApplicable) } else if let Some(mut_ty_snip) = snippet_opt(cx, mut_ty.ty.span) { (format!("{}::{sugg_fn}::<{mut_ty_snip}>()", self.std_or_core), Applicability::MachineApplicable) } else { // `MaybeIncorrect` as type inference may not work with the suggested code (format!("{}::{sugg_fn}()", self.std_or_core), Applicability::MaybeIncorrect) }; span_lint_and_sugg(cx, ZERO_PTR, span, msg, "try", sugg, appl); } } } }