// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. // The Rust abstract syntax tree. pub use self::StructFieldKind::*; pub use self::TyParamBound::*; pub use self::UnsafeSource::*; pub use self::ViewPath_::*; pub use self::PathParameters::*; use attr::ThinAttributes; use codemap::{Span, Spanned, DUMMY_SP, ExpnId}; use abi::Abi; use ext::base; use ext::tt::macro_parser; use parse::token::InternedString; use parse::token; use parse::lexer; use parse::lexer::comments::{doc_comment_style, strip_doc_comment_decoration}; use print::pprust; use ptr::P; use std::fmt; use std::rc::Rc; use std::borrow::Cow; use std::hash::{Hash, Hasher}; use serialize::{Encodable, Decodable, Encoder, Decoder}; /// A name is a part of an identifier, representing a string or gensym. It's /// the result of interning. #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)] pub struct Name(pub u32); /// A SyntaxContext represents a chain of macro-expandings /// and renamings. Each macro expansion corresponds to /// a fresh u32. This u32 is a reference to a table stored /// in thread-local storage. /// The special value EMPTY_CTXT is used to indicate an empty /// syntax context. #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)] pub struct SyntaxContext(pub u32); /// An identifier contains a Name (index into the interner /// table) and a SyntaxContext to track renaming and /// macro expansion per Flatt et al., "Macros That Work Together" #[derive(Clone, Copy, Eq)] pub struct Ident { pub name: Name, pub ctxt: SyntaxContext } impl Name { pub fn as_str(self) -> token::InternedString { token::InternedString::new_from_name(self) } } impl fmt::Debug for Name { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}({})", self, self.0) } } impl fmt::Display for Name { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Display::fmt(&self.as_str(), f) } } impl Encodable for Name { fn encode(&self, s: &mut S) -> Result<(), S::Error> { s.emit_str(&self.as_str()) } } impl Decodable for Name { fn decode(d: &mut D) -> Result { Ok(token::intern(&try!(d.read_str())[..])) } } pub const EMPTY_CTXT : SyntaxContext = SyntaxContext(0); impl Ident { pub fn new(name: Name, ctxt: SyntaxContext) -> Ident { Ident {name: name, ctxt: ctxt} } pub fn with_empty_ctxt(name: Name) -> Ident { Ident {name: name, ctxt: EMPTY_CTXT} } } impl PartialEq for Ident { fn eq(&self, other: &Ident) -> bool { if self.ctxt != other.ctxt { // There's no one true way to compare Idents. They can be compared // non-hygienically `id1.name == id2.name`, hygienically // `mtwt::resolve(id1) == mtwt::resolve(id2)`, or even member-wise // `(id1.name, id1.ctxt) == (id2.name, id2.ctxt)` depending on the situation. // Ideally, PartialEq should not be implemented for Ident at all, but that // would be too impractical, because many larger structures (Token, in particular) // including Idents as their parts derive PartialEq and use it for non-hygienic // comparisons. That's why PartialEq is implemented and defaults to non-hygienic // comparison. Hash is implemented too and is consistent with PartialEq, i.e. only // the name of Ident is hashed. Still try to avoid comparing idents in your code // (especially as keys in hash maps), use one of the three methods listed above // explicitly. // // If you see this panic, then some idents from different contexts were compared // non-hygienically. It's likely a bug. Use one of the three comparison methods // listed above explicitly. panic!("idents with different contexts are compared with operator `==`: \ {:?}, {:?}.", self, other); } self.name == other.name } } impl Hash for Ident { fn hash(&self, state: &mut H) { self.name.hash(state) } } impl fmt::Debug for Ident { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}#{}", self.name, self.ctxt.0) } } impl fmt::Display for Ident { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Display::fmt(&self.name, f) } } impl Encodable for Ident { fn encode(&self, s: &mut S) -> Result<(), S::Error> { self.name.encode(s) } } impl Decodable for Ident { fn decode(d: &mut D) -> Result { Ok(Ident::with_empty_ctxt(try!(Name::decode(d)))) } } /// A mark represents a unique id associated with a macro expansion pub type Mrk = u32; #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Copy)] pub struct Lifetime { pub id: NodeId, pub span: Span, pub name: Name } impl fmt::Debug for Lifetime { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "lifetime({}: {})", self.id, pprust::lifetime_to_string(self)) } } /// A lifetime definition, eg `'a: 'b+'c+'d` #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct LifetimeDef { pub lifetime: Lifetime, pub bounds: Vec } /// A "Path" is essentially Rust's notion of a name; for instance: /// std::cmp::PartialEq . It's represented as a sequence of identifiers, /// along with a bunch of supporting information. #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)] pub struct Path { pub span: Span, /// A `::foo` path, is relative to the crate root rather than current /// module (like paths in an import). pub global: bool, /// The segments in the path: the things separated by `::`. pub segments: Vec, } impl fmt::Debug for Path { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "path({})", pprust::path_to_string(self)) } } impl fmt::Display for Path { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", pprust::path_to_string(self)) } } /// A segment of a path: an identifier, an optional lifetime, and a set of /// types. #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct PathSegment { /// The identifier portion of this path segment. pub identifier: Ident, /// Type/lifetime parameters attached to this path. They come in /// two flavors: `Path` and `Path(A,B) -> C`. Note that /// this is more than just simple syntactic sugar; the use of /// parens affects the region binding rules, so we preserve the /// distinction. pub parameters: PathParameters, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum PathParameters { /// The `<'a, A,B,C>` in `foo::bar::baz::<'a, A,B,C>` AngleBracketed(AngleBracketedParameterData), /// The `(A,B)` and `C` in `Foo(A,B) -> C` Parenthesized(ParenthesizedParameterData), } impl PathParameters { pub fn none() -> PathParameters { PathParameters::AngleBracketed(AngleBracketedParameterData { lifetimes: Vec::new(), types: P::empty(), bindings: P::empty(), }) } pub fn is_empty(&self) -> bool { match *self { PathParameters::AngleBracketed(ref data) => data.is_empty(), // Even if the user supplied no types, something like // `X()` is equivalent to `X<(),()>`. PathParameters::Parenthesized(..) => false, } } pub fn has_lifetimes(&self) -> bool { match *self { PathParameters::AngleBracketed(ref data) => !data.lifetimes.is_empty(), PathParameters::Parenthesized(_) => false, } } pub fn has_types(&self) -> bool { match *self { PathParameters::AngleBracketed(ref data) => !data.types.is_empty(), PathParameters::Parenthesized(..) => true, } } /// Returns the types that the user wrote. Note that these do not necessarily map to the type /// parameters in the parenthesized case. pub fn types(&self) -> Vec<&P> { match *self { PathParameters::AngleBracketed(ref data) => { data.types.iter().collect() } PathParameters::Parenthesized(ref data) => { data.inputs.iter() .chain(data.output.iter()) .collect() } } } pub fn lifetimes(&self) -> Vec<&Lifetime> { match *self { PathParameters::AngleBracketed(ref data) => { data.lifetimes.iter().collect() } PathParameters::Parenthesized(_) => { Vec::new() } } } pub fn bindings(&self) -> Vec<&TypeBinding> { match *self { PathParameters::AngleBracketed(ref data) => { data.bindings.iter().collect() } PathParameters::Parenthesized(_) => { Vec::new() } } } } /// A path like `Foo<'a, T>` #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct AngleBracketedParameterData { /// The lifetime parameters for this path segment. pub lifetimes: Vec, /// The type parameters for this path segment, if present. pub types: P<[P]>, /// Bindings (equality constraints) on associated types, if present. /// e.g., `Foo`. pub bindings: P<[TypeBinding]>, } impl AngleBracketedParameterData { fn is_empty(&self) -> bool { self.lifetimes.is_empty() && self.types.is_empty() && self.bindings.is_empty() } } /// A path like `Foo(A,B) -> C` #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct ParenthesizedParameterData { /// Overall span pub span: Span, /// `(A,B)` pub inputs: Vec>, /// `C` pub output: Option>, } pub type CrateNum = u32; pub type NodeId = u32; /// Node id used to represent the root of the crate. pub const CRATE_NODE_ID: NodeId = 0; /// When parsing and doing expansions, we initially give all AST nodes this AST /// node value. Then later, in the renumber pass, we renumber them to have /// small, positive ids. pub const DUMMY_NODE_ID: NodeId = !0; pub trait NodeIdAssigner { fn next_node_id(&self) -> NodeId; fn peek_node_id(&self) -> NodeId; } /// The AST represents all type param bounds as types. /// typeck::collect::compute_bounds matches these against /// the "special" built-in traits (see middle::lang_items) and /// detects Copy, Send and Sync. #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum TyParamBound { TraitTyParamBound(PolyTraitRef, TraitBoundModifier), RegionTyParamBound(Lifetime) } /// A modifier on a bound, currently this is only used for `?Sized`, where the /// modifier is `Maybe`. Negative bounds should also be handled here. #[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum TraitBoundModifier { None, Maybe, } pub type TyParamBounds = P<[TyParamBound]>; #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct TyParam { pub ident: Ident, pub id: NodeId, pub bounds: TyParamBounds, pub default: Option>, pub span: Span } /// Represents lifetimes and type parameters attached to a declaration /// of a function, enum, trait, etc. #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct Generics { pub lifetimes: Vec, pub ty_params: P<[TyParam]>, pub where_clause: WhereClause, } impl Generics { pub fn is_lt_parameterized(&self) -> bool { !self.lifetimes.is_empty() } pub fn is_type_parameterized(&self) -> bool { !self.ty_params.is_empty() } pub fn is_parameterized(&self) -> bool { self.is_lt_parameterized() || self.is_type_parameterized() } } impl Default for Generics { fn default() -> Generics { Generics { lifetimes: Vec::new(), ty_params: P::empty(), where_clause: WhereClause { id: DUMMY_NODE_ID, predicates: Vec::new(), } } } } /// A `where` clause in a definition #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct WhereClause { pub id: NodeId, pub predicates: Vec, } /// A single predicate in a `where` clause #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum WherePredicate { /// A type binding, e.g. `for<'c> Foo: Send+Clone+'c` BoundPredicate(WhereBoundPredicate), /// A lifetime predicate, e.g. `'a: 'b+'c` RegionPredicate(WhereRegionPredicate), /// An equality predicate (unsupported) EqPredicate(WhereEqPredicate), } /// A type bound, e.g. `for<'c> Foo: Send+Clone+'c` #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct WhereBoundPredicate { pub span: Span, /// Any lifetimes from a `for` binding pub bound_lifetimes: Vec, /// The type being bounded pub bounded_ty: P, /// Trait and lifetime bounds (`Clone+Send+'static`) pub bounds: TyParamBounds, } /// A lifetime predicate, e.g. `'a: 'b+'c` #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct WhereRegionPredicate { pub span: Span, pub lifetime: Lifetime, pub bounds: Vec, } /// An equality predicate (unsupported), e.g. `T=int` #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct WhereEqPredicate { pub id: NodeId, pub span: Span, pub path: Path, pub ty: P, } /// The set of MetaItems that define the compilation environment of the crate, /// used to drive conditional compilation pub type CrateConfig = Vec>; #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct Crate { pub module: Mod, pub attrs: Vec, pub config: CrateConfig, pub span: Span, pub exported_macros: Vec, } pub type MetaItem = Spanned; #[derive(Clone, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum MetaItemKind { Word(InternedString), List(InternedString, Vec>), NameValue(InternedString, Lit), } // can't be derived because the MetaItemKind::List requires an unordered comparison impl PartialEq for MetaItemKind { fn eq(&self, other: &MetaItemKind) -> bool { use self::MetaItemKind::*; match *self { Word(ref ns) => match *other { Word(ref no) => (*ns) == (*no), _ => false }, NameValue(ref ns, ref vs) => match *other { NameValue(ref no, ref vo) => { (*ns) == (*no) && vs.node == vo.node } _ => false }, List(ref ns, ref miss) => match *other { List(ref no, ref miso) => { ns == no && miss.iter().all(|mi| miso.iter().any(|x| x.node == mi.node)) } _ => false } } } } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct Block { /// Statements in a block pub stmts: Vec, /// An expression at the end of the block /// without a semicolon, if any pub expr: Option>, pub id: NodeId, /// Distinguishes between `unsafe { ... }` and `{ ... }` pub rules: BlockCheckMode, pub span: Span, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)] pub struct Pat { pub id: NodeId, pub node: PatKind, pub span: Span, } impl fmt::Debug for Pat { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "pat({}: {})", self.id, pprust::pat_to_string(self)) } } /// A single field in a struct pattern /// /// Patterns like the fields of Foo `{ x, ref y, ref mut z }` /// are treated the same as` x: x, y: ref y, z: ref mut z`, /// except is_shorthand is true #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct FieldPat { /// The identifier for the field pub ident: Ident, /// The pattern the field is destructured to pub pat: P, pub is_shorthand: bool, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)] pub enum BindingMode { ByRef(Mutability), ByValue(Mutability), } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum PatKind { /// Represents a wildcard pattern (`_`) Wild, /// A `PatKind::Ident` may either be a new bound variable, /// or a unit struct/variant pattern, or a const pattern (in the last two cases /// the third field must be `None`). /// /// In the unit or const pattern case, the parser can't determine /// which it is. The resolver determines this, and /// records this pattern's `NodeId` in an auxiliary /// set (of "PatIdents that refer to unit patterns or constants"). Ident(BindingMode, SpannedIdent, Option>), /// A struct or struct variant pattern, e.g. `Variant {x, y, ..}`. /// The `bool` is `true` in the presence of a `..`. Struct(Path, Vec>, bool), /// A tuple struct/variant pattern `Variant(x, y, z)`. /// "None" means a `Variant(..)` pattern where we don't bind the fields to names. TupleStruct(Path, Option>>), /// A path pattern. /// Such pattern can be resolved to a unit struct/variant or a constant. Path(Path), /// An associated const named using the qualified path `::CONST` or /// `::CONST`. Associated consts from inherent impls can be /// referred to as simply `T::CONST`, in which case they will end up as /// PatKind::Path, and the resolver will have to sort that out. QPath(QSelf, Path), /// A tuple pattern `(a, b)` Tup(Vec>), /// A `box` pattern Box(P), /// A reference pattern, e.g. `&mut (a, b)` Ref(P, Mutability), /// A literal Lit(P), /// A range pattern, e.g. `1...2` Range(P, P), /// `[a, b, ..i, y, z]` is represented as: /// `PatKind::Vec(box [a, b], Some(i), box [y, z])` Vec(Vec>, Option>, Vec>), /// A macro pattern; pre-expansion Mac(Mac), } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)] pub enum Mutability { Mutable, Immutable, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)] pub enum BinOpKind { /// The `+` operator (addition) Add, /// The `-` operator (subtraction) Sub, /// The `*` operator (multiplication) Mul, /// The `/` operator (division) Div, /// The `%` operator (modulus) Rem, /// The `&&` operator (logical and) And, /// The `||` operator (logical or) Or, /// The `^` operator (bitwise xor) BitXor, /// The `&` operator (bitwise and) BitAnd, /// The `|` operator (bitwise or) BitOr, /// The `<<` operator (shift left) Shl, /// The `>>` operator (shift right) Shr, /// The `==` operator (equality) Eq, /// The `<` operator (less than) Lt, /// The `<=` operator (less than or equal to) Le, /// The `!=` operator (not equal to) Ne, /// The `>=` operator (greater than or equal to) Ge, /// The `>` operator (greater than) Gt, } impl BinOpKind { pub fn to_string(&self) -> &'static str { use self::BinOpKind::*; match *self { Add => "+", Sub => "-", Mul => "*", Div => "/", Rem => "%", And => "&&", Or => "||", BitXor => "^", BitAnd => "&", BitOr => "|", Shl => "<<", Shr => ">>", Eq => "==", Lt => "<", Le => "<=", Ne => "!=", Ge => ">=", Gt => ">", } } pub fn lazy(&self) -> bool { match *self { BinOpKind::And | BinOpKind::Or => true, _ => false } } pub fn is_shift(&self) -> bool { match *self { BinOpKind::Shl | BinOpKind::Shr => true, _ => false } } pub fn is_comparison(&self) -> bool { use self::BinOpKind::*; match *self { Eq | Lt | Le | Ne | Gt | Ge => true, And | Or | Add | Sub | Mul | Div | Rem | BitXor | BitAnd | BitOr | Shl | Shr => false, } } /// Returns `true` if the binary operator takes its arguments by value pub fn is_by_value(&self) -> bool { !self.is_comparison() } } pub type BinOp = Spanned; #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)] pub enum UnOp { /// The `*` operator for dereferencing Deref, /// The `!` operator for logical inversion Not, /// The `-` operator for negation Neg, } impl UnOp { /// Returns `true` if the unary operator takes its argument by value pub fn is_by_value(u: UnOp) -> bool { match u { UnOp::Neg | UnOp::Not => true, _ => false, } } pub fn to_string(op: UnOp) -> &'static str { match op { UnOp::Deref => "*", UnOp::Not => "!", UnOp::Neg => "-", } } } /// A statement pub type Stmt = Spanned; impl fmt::Debug for Stmt { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "stmt({}: {})", self.node.id() .map_or(Cow::Borrowed(""),|id|Cow::Owned(id.to_string())), pprust::stmt_to_string(self)) } } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)] pub enum StmtKind { /// Could be an item or a local (let) binding: Decl(P, NodeId), /// Expr without trailing semi-colon (must have unit type): Expr(P, NodeId), /// Expr with trailing semi-colon (may have any type): Semi(P, NodeId), Mac(P, MacStmtStyle, ThinAttributes), } impl StmtKind { pub fn id(&self) -> Option { match *self { StmtKind::Decl(_, id) => Some(id), StmtKind::Expr(_, id) => Some(id), StmtKind::Semi(_, id) => Some(id), StmtKind::Mac(..) => None, } } pub fn attrs(&self) -> &[Attribute] { match *self { StmtKind::Decl(ref d, _) => d.attrs(), StmtKind::Expr(ref e, _) | StmtKind::Semi(ref e, _) => e.attrs(), StmtKind::Mac(_, _, Some(ref b)) => b, StmtKind::Mac(_, _, None) => &[], } } } #[derive(Clone, Copy, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum MacStmtStyle { /// The macro statement had a trailing semicolon, e.g. `foo! { ... };` /// `foo!(...);`, `foo![...];` Semicolon, /// The macro statement had braces; e.g. foo! { ... } Braces, /// The macro statement had parentheses or brackets and no semicolon; e.g. /// `foo!(...)`. All of these will end up being converted into macro /// expressions. NoBraces, } // FIXME (pending discussion of #1697, #2178...): local should really be // a refinement on pat. /// Local represents a `let` statement, e.g., `let : = ;` #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct Local { pub pat: P, pub ty: Option>, /// Initializer expression to set the value, if any pub init: Option>, pub id: NodeId, pub span: Span, pub attrs: ThinAttributes, } impl Local { pub fn attrs(&self) -> &[Attribute] { match self.attrs { Some(ref b) => b, None => &[], } } } pub type Decl = Spanned; #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum DeclKind { /// A local (let) binding: Local(P), /// An item binding: Item(P), } impl Decl { pub fn attrs(&self) -> &[Attribute] { match self.node { DeclKind::Local(ref l) => l.attrs(), DeclKind::Item(ref i) => i.attrs(), } } } /// represents one arm of a 'match' #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct Arm { pub attrs: Vec, pub pats: Vec>, pub guard: Option>, pub body: P, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct Field { pub ident: SpannedIdent, pub expr: P, pub span: Span, } pub type SpannedIdent = Spanned; #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)] pub enum BlockCheckMode { Default, Unsafe(UnsafeSource), } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)] pub enum UnsafeSource { CompilerGenerated, UserProvided, } /// An expression #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash,)] pub struct Expr { pub id: NodeId, pub node: ExprKind, pub span: Span, pub attrs: ThinAttributes } impl Expr { pub fn attrs(&self) -> &[Attribute] { match self.attrs { Some(ref b) => b, None => &[], } } } impl fmt::Debug for Expr { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "expr({}: {})", self.id, pprust::expr_to_string(self)) } } /// Limit types of a range (inclusive or exclusive) #[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum RangeLimits { /// Inclusive at the beginning, exclusive at the end HalfOpen, /// Inclusive at the beginning and end Closed, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum ExprKind { /// A `box x` expression. Box(P), /// First expr is the place; second expr is the value. InPlace(P, P), /// An array (`[a, b, c, d]`) Vec(Vec>), /// A function call /// /// The first field resolves to the function itself, /// and the second field is the list of arguments Call(P, Vec>), /// A method call (`x.foo::(a, b, c, d)`) /// /// The `SpannedIdent` is the identifier for the method name. /// The vector of `Ty`s are the ascripted type parameters for the method /// (within the angle brackets). /// /// The first element of the vector of `Expr`s is the expression that evaluates /// to the object on which the method is being called on (the receiver), /// and the remaining elements are the rest of the arguments. /// /// Thus, `x.foo::(a, b, c, d)` is represented as /// `ExprKind::MethodCall(foo, [Bar, Baz], [x, a, b, c, d])`. MethodCall(SpannedIdent, Vec>, Vec>), /// A tuple (`(a, b, c ,d)`) Tup(Vec>), /// A binary operation (For example: `a + b`, `a * b`) Binary(BinOp, P, P), /// A unary operation (For example: `!x`, `*x`) Unary(UnOp, P), /// A literal (For example: `1`, `"foo"`) Lit(P), /// A cast (`foo as f64`) Cast(P, P), Type(P, P), /// An `if` block, with an optional else block /// /// `if expr { block } else { expr }` If(P, P, Option>), /// An `if let` expression with an optional else block /// /// `if let pat = expr { block } else { expr }` /// /// This is desugared to a `match` expression. IfLet(P, P, P, Option>), /// A while loop, with an optional label /// /// `'label: while expr { block }` While(P, P, Option), /// A while-let loop, with an optional label /// /// `'label: while let pat = expr { block }` /// /// This is desugared to a combination of `loop` and `match` expressions. WhileLet(P, P, P, Option), /// A for loop, with an optional label /// /// `'label: for pat in expr { block }` /// /// This is desugared to a combination of `loop` and `match` expressions. ForLoop(P, P, P, Option), /// Conditionless loop (can be exited with break, continue, or return) /// /// `'label: loop { block }` Loop(P, Option), /// A `match` block. Match(P, Vec), /// A closure (for example, `move |a, b, c| {a + b + c}`) Closure(CaptureBy, P, P), /// A block (`{ ... }`) Block(P), /// An assignment (`a = foo()`) Assign(P, P), /// An assignment with an operator /// /// For example, `a += 1`. AssignOp(BinOp, P, P), /// Access of a named struct field (`obj.foo`) Field(P, SpannedIdent), /// Access of an unnamed field of a struct or tuple-struct /// /// For example, `foo.0`. TupField(P, Spanned), /// An indexing operation (`foo[2]`) Index(P, P), /// A range (`1..2`, `1..`, `..2`, `1...2`, `1...`, `...2`) Range(Option>, Option>, RangeLimits), /// Variable reference, possibly containing `::` and/or type /// parameters, e.g. foo::bar::. /// /// Optionally "qualified", /// e.g. ` as SomeTrait>::SomeType`. Path(Option, Path), /// A referencing operation (`&a` or `&mut a`) AddrOf(Mutability, P), /// A `break`, with an optional label to break Break(Option), /// A `continue`, with an optional label Again(Option), /// A `return`, with an optional value to be returned Ret(Option>), /// Output of the `asm!()` macro InlineAsm(InlineAsm), /// A macro invocation; pre-expansion Mac(Mac), /// A struct literal expression. /// /// For example, `Foo {x: 1, y: 2}`, or /// `Foo {x: 1, .. base}`, where `base` is the `Option`. Struct(Path, Vec, Option>), /// An array literal constructed from one repeated element. /// /// For example, `[1; 5]`. The first expression is the element /// to be repeated; the second is the number of times to repeat it. Repeat(P, P), /// No-op: used solely so we can pretty-print faithfully Paren(P), /// `expr?` Try(P), } /// The explicit Self type in a "qualified path". The actual /// path, including the trait and the associated item, is stored /// separately. `position` represents the index of the associated /// item qualified with this Self type. /// /// ```ignore /// as a::b::Trait>::AssociatedItem /// ^~~~~ ~~~~~~~~~~~~~~^ /// ty position = 3 /// /// >::AssociatedItem /// ^~~~~ ^ /// ty position = 0 /// ``` #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct QSelf { pub ty: P, pub position: usize } /// A capture clause #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)] pub enum CaptureBy { Value, Ref, } /// A delimited sequence of token trees #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct Delimited { /// The type of delimiter pub delim: token::DelimToken, /// The span covering the opening delimiter pub open_span: Span, /// The delimited sequence of token trees pub tts: Vec, /// The span covering the closing delimiter pub close_span: Span, } impl Delimited { /// Returns the opening delimiter as a token. pub fn open_token(&self) -> token::Token { token::OpenDelim(self.delim) } /// Returns the closing delimiter as a token. pub fn close_token(&self) -> token::Token { token::CloseDelim(self.delim) } /// Returns the opening delimiter as a token tree. pub fn open_tt(&self) -> TokenTree { TokenTree::Token(self.open_span, self.open_token()) } /// Returns the closing delimiter as a token tree. pub fn close_tt(&self) -> TokenTree { TokenTree::Token(self.close_span, self.close_token()) } } /// A sequence of token trees #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct SequenceRepetition { /// The sequence of token trees pub tts: Vec, /// The optional separator pub separator: Option, /// Whether the sequence can be repeated zero (*), or one or more times (+) pub op: KleeneOp, /// The number of `MatchNt`s that appear in the sequence (and subsequences) pub num_captures: usize, } /// A Kleene-style [repetition operator](http://en.wikipedia.org/wiki/Kleene_star) /// for token sequences. #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)] pub enum KleeneOp { ZeroOrMore, OneOrMore, } /// When the main rust parser encounters a syntax-extension invocation, it /// parses the arguments to the invocation as a token-tree. This is a very /// loose structure, such that all sorts of different AST-fragments can /// be passed to syntax extensions using a uniform type. /// /// If the syntax extension is an MBE macro, it will attempt to match its /// LHS token tree against the provided token tree, and if it finds a /// match, will transcribe the RHS token tree, splicing in any captured /// macro_parser::matched_nonterminals into the `SubstNt`s it finds. /// /// The RHS of an MBE macro is the only place `SubstNt`s are substituted. /// Nothing special happens to misnamed or misplaced `SubstNt`s. #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum TokenTree { /// A single token Token(Span, token::Token), /// A delimited sequence of token trees Delimited(Span, Rc), // This only makes sense in MBE macros. /// A kleene-style repetition sequence with a span // FIXME(eddyb) #12938 Use DST. Sequence(Span, Rc), } impl TokenTree { pub fn len(&self) -> usize { match *self { TokenTree::Token(_, token::DocComment(name)) => { match doc_comment_style(&name.as_str()) { AttrStyle::Outer => 2, AttrStyle::Inner => 3 } } TokenTree::Token(_, token::SpecialVarNt(..)) => 2, TokenTree::Token(_, token::MatchNt(..)) => 3, TokenTree::Delimited(_, ref delimed) => { delimed.tts.len() + 2 } TokenTree::Sequence(_, ref seq) => { seq.tts.len() } TokenTree::Token(..) => 0 } } pub fn get_tt(&self, index: usize) -> TokenTree { match (self, index) { (&TokenTree::Token(sp, token::DocComment(_)), 0) => { TokenTree::Token(sp, token::Pound) } (&TokenTree::Token(sp, token::DocComment(name)), 1) if doc_comment_style(&name.as_str()) == AttrStyle::Inner => { TokenTree::Token(sp, token::Not) } (&TokenTree::Token(sp, token::DocComment(name)), _) => { let stripped = strip_doc_comment_decoration(&name.as_str()); // Searches for the occurrences of `"#*` and returns the minimum number of `#`s // required to wrap the text. let num_of_hashes = stripped.chars().scan(0, |cnt, x| { *cnt = if x == '"' { 1 } else if *cnt != 0 && x == '#' { *cnt + 1 } else { 0 }; Some(*cnt) }).max().unwrap_or(0); TokenTree::Delimited(sp, Rc::new(Delimited { delim: token::Bracket, open_span: sp, tts: vec![TokenTree::Token(sp, token::Ident(token::str_to_ident("doc"), token::Plain)), TokenTree::Token(sp, token::Eq), TokenTree::Token(sp, token::Literal( token::StrRaw(token::intern(&stripped), num_of_hashes), None))], close_span: sp, })) } (&TokenTree::Delimited(_, ref delimed), _) => { if index == 0 { return delimed.open_tt(); } if index == delimed.tts.len() + 1 { return delimed.close_tt(); } delimed.tts[index - 1].clone() } (&TokenTree::Token(sp, token::SpecialVarNt(var)), _) => { let v = [TokenTree::Token(sp, token::Dollar), TokenTree::Token(sp, token::Ident(token::str_to_ident(var.as_str()), token::Plain))]; v[index].clone() } (&TokenTree::Token(sp, token::MatchNt(name, kind, name_st, kind_st)), _) => { let v = [TokenTree::Token(sp, token::SubstNt(name, name_st)), TokenTree::Token(sp, token::Colon), TokenTree::Token(sp, token::Ident(kind, kind_st))]; v[index].clone() } (&TokenTree::Sequence(_, ref seq), _) => { seq.tts[index].clone() } _ => panic!("Cannot expand a token tree") } } /// Returns the `Span` corresponding to this token tree. pub fn get_span(&self) -> Span { match *self { TokenTree::Token(span, _) => span, TokenTree::Delimited(span, _) => span, TokenTree::Sequence(span, _) => span, } } /// Use this token tree as a matcher to parse given tts. pub fn parse(cx: &base::ExtCtxt, mtch: &[TokenTree], tts: &[TokenTree]) -> macro_parser::NamedParseResult { // `None` is because we're not interpolating let arg_rdr = lexer::new_tt_reader_with_doc_flag(&cx.parse_sess().span_diagnostic, None, None, tts.iter().cloned().collect(), true); macro_parser::parse(cx.parse_sess(), cx.cfg(), arg_rdr, mtch) } } pub type Mac = Spanned; /// Represents a macro invocation. The Path indicates which macro /// is being invoked, and the vector of token-trees contains the source /// of the macro invocation. /// /// NB: the additional ident for a macro_rules-style macro is actually /// stored in the enclosing item. Oog. #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct Mac_ { pub path: Path, pub tts: Vec, pub ctxt: SyntaxContext, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)] pub enum StrStyle { /// A regular string, like `"foo"` Cooked, /// A raw string, like `r##"foo"##` /// /// The uint is the number of `#` symbols used Raw(usize) } /// A literal pub type Lit = Spanned; #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)] pub enum LitIntType { Signed(IntTy), Unsigned(UintTy), Unsuffixed, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum LitKind { /// A string literal (`"foo"`) Str(InternedString, StrStyle), /// A byte string (`b"foo"`) ByteStr(Rc>), /// A byte char (`b'f'`) Byte(u8), /// A character literal (`'a'`) Char(char), /// An integer literal (`1`) Int(u64, LitIntType), /// A float literal (`1f64` or `1E10f64`) Float(InternedString, FloatTy), /// A float literal without a suffix (`1.0 or 1.0E10`) FloatUnsuffixed(InternedString), /// A boolean literal Bool(bool), } impl LitKind { /// Returns true if this literal is a string and false otherwise. pub fn is_str(&self) -> bool { match *self { LitKind::Str(..) => true, _ => false, } } } // NB: If you change this, you'll probably want to change the corresponding // type structure in middle/ty.rs as well. #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct MutTy { pub ty: P, pub mutbl: Mutability, } /// Represents a method's signature in a trait declaration, /// or in an implementation. #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct MethodSig { pub unsafety: Unsafety, pub constness: Constness, pub abi: Abi, pub decl: P, pub generics: Generics, pub explicit_self: ExplicitSelf, } /// Represents a method declaration in a trait declaration, possibly including /// a default implementation. A trait method is either required (meaning it /// doesn't have an implementation, just a signature) or provided (meaning it /// has a default implementation). #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct TraitItem { pub id: NodeId, pub ident: Ident, pub attrs: Vec, pub node: TraitItemKind, pub span: Span, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum TraitItemKind { Const(P, Option>), Method(MethodSig, Option>), Type(TyParamBounds, Option>), } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct ImplItem { pub id: NodeId, pub ident: Ident, pub vis: Visibility, pub attrs: Vec, pub node: ImplItemKind, pub span: Span, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum ImplItemKind { Const(P, P), Method(MethodSig, P), Type(P), Macro(Mac), } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Copy)] pub enum IntTy { Is, I8, I16, I32, I64, } impl fmt::Debug for IntTy { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Display::fmt(self, f) } } impl fmt::Display for IntTy { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.ty_to_string()) } } impl IntTy { pub fn ty_to_string(&self) -> &'static str { match *self { IntTy::Is => "isize", IntTy::I8 => "i8", IntTy::I16 => "i16", IntTy::I32 => "i32", IntTy::I64 => "i64" } } pub fn val_to_string(&self, val: i64) -> String { // cast to a u64 so we can correctly print INT64_MIN. All integral types // are parsed as u64, so we wouldn't want to print an extra negative // sign. format!("{}{}", val as u64, self.ty_to_string()) } pub fn ty_max(&self) -> u64 { match *self { IntTy::I8 => 0x80, IntTy::I16 => 0x8000, IntTy::Is | IntTy::I32 => 0x80000000, // FIXME: actually ni about Is IntTy::I64 => 0x8000000000000000 } } pub fn bit_width(&self) -> Option { Some(match *self { IntTy::Is => return None, IntTy::I8 => 8, IntTy::I16 => 16, IntTy::I32 => 32, IntTy::I64 => 64, }) } } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Copy)] pub enum UintTy { Us, U8, U16, U32, U64, } impl UintTy { pub fn ty_to_string(&self) -> &'static str { match *self { UintTy::Us => "usize", UintTy::U8 => "u8", UintTy::U16 => "u16", UintTy::U32 => "u32", UintTy::U64 => "u64" } } pub fn val_to_string(&self, val: u64) -> String { format!("{}{}", val, self.ty_to_string()) } pub fn ty_max(&self) -> u64 { match *self { UintTy::U8 => 0xff, UintTy::U16 => 0xffff, UintTy::Us | UintTy::U32 => 0xffffffff, // FIXME: actually ni about Us UintTy::U64 => 0xffffffffffffffff } } pub fn bit_width(&self) -> Option { Some(match *self { UintTy::Us => return None, UintTy::U8 => 8, UintTy::U16 => 16, UintTy::U32 => 32, UintTy::U64 => 64, }) } } impl fmt::Debug for UintTy { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Display::fmt(self, f) } } impl fmt::Display for UintTy { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.ty_to_string()) } } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Copy)] pub enum FloatTy { F32, F64, } impl fmt::Debug for FloatTy { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Display::fmt(self, f) } } impl fmt::Display for FloatTy { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.ty_to_string()) } } impl FloatTy { pub fn ty_to_string(&self) -> &'static str { match *self { FloatTy::F32 => "f32", FloatTy::F64 => "f64", } } pub fn bit_width(&self) -> usize { match *self { FloatTy::F32 => 32, FloatTy::F64 => 64, } } } // Bind a type to an associated type: `A=Foo`. #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct TypeBinding { pub id: NodeId, pub ident: Ident, pub ty: P, pub span: Span, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)] pub struct Ty { pub id: NodeId, pub node: TyKind, pub span: Span, } impl fmt::Debug for Ty { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "type({})", pprust::ty_to_string(self)) } } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct BareFnTy { pub unsafety: Unsafety, pub abi: Abi, pub lifetimes: Vec, pub decl: P } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] /// The different kinds of types recognized by the compiler pub enum TyKind { Vec(P), /// A fixed length array (`[T; n]`) FixedLengthVec(P, P), /// A raw pointer (`*const T` or `*mut T`) Ptr(MutTy), /// A reference (`&'a T` or `&'a mut T`) Rptr(Option, MutTy), /// A bare function (e.g. `fn(usize) -> bool`) BareFn(P), /// A tuple (`(A, B, C, D,...)`) Tup(Vec> ), /// A path (`module::module::...::Type`), optionally /// "qualified", e.g. ` as SomeTrait>::SomeType`. /// /// Type parameters are stored in the Path itself Path(Option, Path), /// Something like `A+B`. Note that `B` must always be a path. ObjectSum(P, TyParamBounds), /// A type like `for<'a> Foo<&'a Bar>` PolyTraitRef(TyParamBounds), /// No-op; kept solely so that we can pretty-print faithfully Paren(P), /// Unused for now Typeof(P), /// TyKind::Infer means the type should be inferred instead of it having been /// specified. This can appear anywhere in a type. Infer, // A macro in the type position. Mac(Mac), } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)] pub enum AsmDialect { Att, Intel, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct InlineAsmOutput { pub constraint: InternedString, pub expr: P, pub is_rw: bool, pub is_indirect: bool, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct InlineAsm { pub asm: InternedString, pub asm_str_style: StrStyle, pub outputs: Vec, pub inputs: Vec<(InternedString, P)>, pub clobbers: Vec, pub volatile: bool, pub alignstack: bool, pub dialect: AsmDialect, pub expn_id: ExpnId, } /// represents an argument in a function header #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct Arg { pub ty: P, pub pat: P, pub id: NodeId, } impl Arg { pub fn new_self(span: Span, mutability: Mutability, self_ident: Ident) -> Arg { let path = Spanned{span:span,node:self_ident}; Arg { // HACK(eddyb) fake type for the self argument. ty: P(Ty { id: DUMMY_NODE_ID, node: TyKind::Infer, span: DUMMY_SP, }), pat: P(Pat { id: DUMMY_NODE_ID, node: PatKind::Ident(BindingMode::ByValue(mutability), path, None), span: span }), id: DUMMY_NODE_ID } } } /// Represents the header (not the body) of a function declaration #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct FnDecl { pub inputs: Vec, pub output: FunctionRetTy, pub variadic: bool } #[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum Unsafety { Unsafe, Normal, } #[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum Constness { Const, NotConst, } impl fmt::Display for Unsafety { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Display::fmt(match *self { Unsafety::Normal => "normal", Unsafety::Unsafe => "unsafe", }, f) } } #[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)] pub enum ImplPolarity { /// `impl Trait for Type` Positive, /// `impl !Trait for Type` Negative, } impl fmt::Debug for ImplPolarity { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match *self { ImplPolarity::Positive => "positive".fmt(f), ImplPolarity::Negative => "negative".fmt(f), } } } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum FunctionRetTy { /// Functions with return type `!`that always /// raise an error or exit (i.e. never return to the caller) None(Span), /// Return type is not specified. /// /// Functions default to `()` and /// closures default to inference. Span points to where return /// type would be inserted. Default(Span), /// Everything else Ty(P), } impl FunctionRetTy { pub fn span(&self) -> Span { match *self { FunctionRetTy::None(span) => span, FunctionRetTy::Default(span) => span, FunctionRetTy::Ty(ref ty) => ty.span, } } } /// Represents the kind of 'self' associated with a method #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum SelfKind { /// No self Static, /// `self` Value(Ident), /// `&'lt self`, `&'lt mut self` Region(Option, Mutability, Ident), /// `self: TYPE` Explicit(P, Ident), } pub type ExplicitSelf = Spanned; #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct Mod { /// A span from the first token past `{` to the last token until `}`. /// For `mod foo;`, the inner span ranges from the first token /// to the last token in the external file. pub inner: Span, pub items: Vec>, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct ForeignMod { pub abi: Abi, pub items: Vec, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct EnumDef { pub variants: Vec, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct Variant_ { pub name: Ident, pub attrs: Vec, pub data: VariantData, /// Explicit discriminant, eg `Foo = 1` pub disr_expr: Option>, } pub type Variant = Spanned; #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)] pub enum PathListItemKind { Ident { name: Ident, /// renamed in list, eg `use foo::{bar as baz};` rename: Option, id: NodeId }, Mod { /// renamed in list, eg `use foo::{self as baz};` rename: Option, id: NodeId } } impl PathListItemKind { pub fn id(&self) -> NodeId { match *self { PathListItemKind::Ident { id, .. } | PathListItemKind::Mod { id, .. } => id } } pub fn name(&self) -> Option { match *self { PathListItemKind::Ident { name, .. } => Some(name), PathListItemKind::Mod { .. } => None, } } pub fn rename(&self) -> Option { match *self { PathListItemKind::Ident { rename, .. } | PathListItemKind::Mod { rename, .. } => rename } } } pub type PathListItem = Spanned; pub type ViewPath = Spanned; #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum ViewPath_ { /// `foo::bar::baz as quux` /// /// or just /// /// `foo::bar::baz` (with `as baz` implicitly on the right) ViewPathSimple(Ident, Path), /// `foo::bar::*` ViewPathGlob(Path), /// `foo::bar::{a,b,c}` ViewPathList(Path, Vec) } /// Meta-data associated with an item pub type Attribute = Spanned; /// Distinguishes between Attributes that decorate items and Attributes that /// are contained as statements within items. These two cases need to be /// distinguished for pretty-printing. #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)] pub enum AttrStyle { Outer, Inner, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)] pub struct AttrId(pub usize); /// Doc-comments are promoted to attributes that have is_sugared_doc = true #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct Attribute_ { pub id: AttrId, pub style: AttrStyle, pub value: P, pub is_sugared_doc: bool, } /// TraitRef's appear in impls. /// /// resolve maps each TraitRef's ref_id to its defining trait; that's all /// that the ref_id is for. The impl_id maps to the "self type" of this impl. /// If this impl is an ItemKind::Impl, the impl_id is redundant (it could be the /// same as the impl's node id). #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct TraitRef { pub path: Path, pub ref_id: NodeId, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct PolyTraitRef { /// The `'a` in `<'a> Foo<&'a T>` pub bound_lifetimes: Vec, /// The `Foo<&'a T>` in `<'a> Foo<&'a T>` pub trait_ref: TraitRef, pub span: Span, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)] pub enum Visibility { Public, Inherited, } impl Visibility { pub fn inherit_from(&self, parent_visibility: Visibility) -> Visibility { match *self { Visibility::Inherited => parent_visibility, Visibility::Public => *self } } } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct StructField_ { pub kind: StructFieldKind, pub id: NodeId, pub ty: P, pub attrs: Vec, } impl StructField_ { pub fn ident(&self) -> Option { match self.kind { NamedField(ref ident, _) => Some(ident.clone()), UnnamedField(_) => None } } } pub type StructField = Spanned; #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)] pub enum StructFieldKind { NamedField(Ident, Visibility), /// Element of a tuple-like struct UnnamedField(Visibility), } impl StructFieldKind { pub fn is_unnamed(&self) -> bool { match *self { UnnamedField(..) => true, NamedField(..) => false, } } pub fn visibility(&self) -> Visibility { match *self { NamedField(_, vis) | UnnamedField(vis) => vis } } } /// Fields and Ids of enum variants and structs /// /// For enum variants: `NodeId` represents both an Id of the variant itself (relevant for all /// variant kinds) and an Id of the variant's constructor (not relevant for `Struct`-variants). /// One shared Id can be successfully used for these two purposes. /// Id of the whole enum lives in `Item`. /// /// For structs: `NodeId` represents an Id of the structure's constructor, so it is not actually /// used for `Struct`-structs (but still presents). Structures don't have an analogue of "Id of /// the variant itself" from enum variants. /// Id of the whole struct lives in `Item`. #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum VariantData { Struct(Vec, NodeId), Tuple(Vec, NodeId), Unit(NodeId), } impl VariantData { pub fn fields(&self) -> &[StructField] { match *self { VariantData::Struct(ref fields, _) | VariantData::Tuple(ref fields, _) => fields, _ => &[], } } pub fn id(&self) -> NodeId { match *self { VariantData::Struct(_, id) | VariantData::Tuple(_, id) | VariantData::Unit(id) => id } } pub fn is_struct(&self) -> bool { if let VariantData::Struct(..) = *self { true } else { false } } pub fn is_tuple(&self) -> bool { if let VariantData::Tuple(..) = *self { true } else { false } } pub fn is_unit(&self) -> bool { if let VariantData::Unit(..) = *self { true } else { false } } } /* FIXME (#3300): Should allow items to be anonymous. Right now we just use dummy names for anon items. */ /// An item /// /// The name might be a dummy name in case of anonymous items #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct Item { pub ident: Ident, pub attrs: Vec, pub id: NodeId, pub node: ItemKind, pub vis: Visibility, pub span: Span, } impl Item { pub fn attrs(&self) -> &[Attribute] { &self.attrs } } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum ItemKind { /// An`extern crate` item, with optional original crate name, /// /// e.g. `extern crate foo` or `extern crate foo_bar as foo` ExternCrate(Option), /// A `use` or `pub use` item Use(P), /// A `static` item Static(P, Mutability, P), /// A `const` item Const(P, P), /// A function declaration Fn(P, Unsafety, Constness, Abi, Generics, P), /// A module Mod(Mod), /// An external module ForeignMod(ForeignMod), /// A type alias, e.g. `type Foo = Bar` Ty(P, Generics), /// An enum definition, e.g. `enum Foo {C, D}` Enum(EnumDef, Generics), /// A struct definition, e.g. `struct Foo {x: A}` Struct(VariantData, Generics), /// Represents a Trait Declaration Trait(Unsafety, Generics, TyParamBounds, Vec), // Default trait implementations /// // `impl Trait for .. {}` DefaultImpl(Unsafety, TraitRef), /// An implementation, eg `impl Trait for Foo { .. }` Impl(Unsafety, ImplPolarity, Generics, Option, // (optional) trait this impl implements P, // self Vec), /// A macro invocation (which includes macro definition) Mac(Mac), } impl ItemKind { pub fn descriptive_variant(&self) -> &str { match *self { ItemKind::ExternCrate(..) => "extern crate", ItemKind::Use(..) => "use", ItemKind::Static(..) => "static item", ItemKind::Const(..) => "constant item", ItemKind::Fn(..) => "function", ItemKind::Mod(..) => "module", ItemKind::ForeignMod(..) => "foreign module", ItemKind::Ty(..) => "type alias", ItemKind::Enum(..) => "enum", ItemKind::Struct(..) => "struct", ItemKind::Trait(..) => "trait", ItemKind::Mac(..) | ItemKind::Impl(..) | ItemKind::DefaultImpl(..) => "item" } } } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct ForeignItem { pub ident: Ident, pub attrs: Vec, pub node: ForeignItemKind, pub id: NodeId, pub span: Span, pub vis: Visibility, } /// An item within an `extern` block #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum ForeignItemKind { /// A foreign function Fn(P, Generics), /// A foreign static item (`static ext: u8`), with optional mutability /// (the boolean is true when mutable) Static(P, bool), } impl ForeignItemKind { pub fn descriptive_variant(&self) -> &str { match *self { ForeignItemKind::Fn(..) => "foreign function", ForeignItemKind::Static(..) => "foreign static item" } } } /// A macro definition, in this crate or imported from another. /// /// Not parsed directly, but created on macro import or `macro_rules!` expansion. #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct MacroDef { pub ident: Ident, pub attrs: Vec, pub id: NodeId, pub span: Span, pub imported_from: Option, pub export: bool, pub use_locally: bool, pub allow_internal_unstable: bool, pub body: Vec, } #[cfg(test)] mod tests { use serialize; use super::*; // are ASTs encodable? #[test] fn check_asts_encodable() { fn assert_encodable() {} assert_encodable::(); } }