// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use ast::*; use ast; use ast_util; use codemap::{respan, Span, Spanned}; use parse::token; use owned_slice::OwnedSlice; use util::small_vector::SmallVector; use std::rc::Rc; // We may eventually want to be able to fold over type parameters, too. pub trait Folder { fn fold_crate(&mut self, c: Crate) -> Crate { noop_fold_crate(c, self) } fn fold_meta_items(&mut self, meta_items: &[@MetaItem]) -> Vec<@MetaItem> { meta_items.iter().map(|x| fold_meta_item_(*x, self)).collect() } fn fold_view_paths(&mut self, view_paths: &[@ViewPath]) -> Vec<@ViewPath> { view_paths.iter().map(|view_path| { let inner_view_path = match view_path.node { ViewPathSimple(ref ident, ref path, node_id) => { let id = self.new_id(node_id); ViewPathSimple(ident.clone(), self.fold_path(path), id) } ViewPathGlob(ref path, node_id) => { let id = self.new_id(node_id); ViewPathGlob(self.fold_path(path), id) } ViewPathList(ref path, ref path_list_idents, node_id) => { let id = self.new_id(node_id); ViewPathList(self.fold_path(path), path_list_idents.iter().map(|path_list_ident| { let id = self.new_id(path_list_ident.node .id); Spanned { node: PathListIdent_ { name: path_list_ident.node .name .clone(), id: id, }, span: self.new_span( path_list_ident.span) } }).collect(), id) } }; @Spanned { node: inner_view_path, span: self.new_span(view_path.span), } }).collect() } fn fold_view_item(&mut self, vi: &ViewItem) -> ViewItem { noop_fold_view_item(vi, self) } fn fold_foreign_item(&mut self, ni: @ForeignItem) -> @ForeignItem { noop_fold_foreign_item(ni, self) } fn fold_item(&mut self, i: @Item) -> SmallVector<@Item> { noop_fold_item(i, self) } fn fold_struct_field(&mut self, sf: &StructField) -> StructField { let id = self.new_id(sf.node.id); Spanned { node: ast::StructField_ { kind: sf.node.kind, id: id, ty: self.fold_ty(sf.node.ty), attrs: sf.node.attrs.iter().map(|e| fold_attribute_(*e, self)).collect() }, span: self.new_span(sf.span) } } fn fold_item_underscore(&mut self, i: &Item_) -> Item_ { noop_fold_item_underscore(i, self) } fn fold_fn_decl(&mut self, d: &FnDecl) -> P { noop_fold_fn_decl(d, self) } fn fold_type_method(&mut self, m: &TypeMethod) -> TypeMethod { noop_fold_type_method(m, self) } fn fold_method(&mut self, m: @Method) -> @Method { noop_fold_method(m, self) } fn fold_block(&mut self, b: P) -> P { noop_fold_block(b, self) } fn fold_stmt(&mut self, s: &Stmt) -> SmallVector<@Stmt> { noop_fold_stmt(s, self) } fn fold_arm(&mut self, a: &Arm) -> Arm { Arm { pats: a.pats.iter().map(|x| self.fold_pat(*x)).collect(), guard: a.guard.map(|x| self.fold_expr(x)), body: self.fold_expr(a.body), } } fn fold_pat(&mut self, p: @Pat) -> @Pat { noop_fold_pat(p, self) } fn fold_decl(&mut self, d: @Decl) -> SmallVector<@Decl> { let node = match d.node { DeclLocal(ref l) => SmallVector::one(DeclLocal(self.fold_local(*l))), DeclItem(it) => { self.fold_item(it).move_iter().map(|i| DeclItem(i)).collect() } }; node.move_iter().map(|node| { @Spanned { node: node, span: self.new_span(d.span), } }).collect() } fn fold_expr(&mut self, e: @Expr) -> @Expr { noop_fold_expr(e, self) } fn fold_ty(&mut self, t: P) -> P { let id = self.new_id(t.id); let node = match t.node { TyNil | TyBot | TyInfer => t.node.clone(), TyBox(ty) => TyBox(self.fold_ty(ty)), TyUniq(ty) => TyUniq(self.fold_ty(ty)), TyVec(ty) => TyVec(self.fold_ty(ty)), TyPtr(ref mt) => TyPtr(fold_mt(mt, self)), TyRptr(ref region, ref mt) => { TyRptr(fold_opt_lifetime(region, self), fold_mt(mt, self)) } TyClosure(ref f, ref region) => { TyClosure(@ClosureTy { fn_style: f.fn_style, onceness: f.onceness, bounds: fold_opt_bounds(&f.bounds, self), decl: self.fold_fn_decl(f.decl), lifetimes: f.lifetimes.iter().map(|l| self.fold_lifetime(l)).collect(), }, fold_opt_lifetime(region, self)) } TyProc(ref f) => { TyProc(@ClosureTy { fn_style: f.fn_style, onceness: f.onceness, bounds: fold_opt_bounds(&f.bounds, self), decl: self.fold_fn_decl(f.decl), lifetimes: f.lifetimes.iter().map(|l| self.fold_lifetime(l)).collect(), }) } TyBareFn(ref f) => { TyBareFn(@BareFnTy { lifetimes: f.lifetimes.iter().map(|l| self.fold_lifetime(l)).collect(), fn_style: f.fn_style, abi: f.abi, decl: self.fold_fn_decl(f.decl) }) } TyTup(ref tys) => TyTup(tys.iter().map(|&ty| self.fold_ty(ty)).collect()), TyPath(ref path, ref bounds, id) => { let id = self.new_id(id); TyPath(self.fold_path(path), fold_opt_bounds(bounds, self), id) } TyFixedLengthVec(ty, e) => { TyFixedLengthVec(self.fold_ty(ty), self.fold_expr(e)) } TyTypeof(expr) => TyTypeof(self.fold_expr(expr)), }; P(Ty { id: id, span: self.new_span(t.span), node: node, }) } fn fold_mod(&mut self, m: &Mod) -> Mod { noop_fold_mod(m, self) } fn fold_foreign_mod(&mut self, nm: &ForeignMod) -> ForeignMod { ast::ForeignMod { abi: nm.abi, view_items: nm.view_items .iter() .map(|x| self.fold_view_item(x)) .collect(), items: nm.items .iter() .map(|x| self.fold_foreign_item(*x)) .collect(), } } fn fold_variant(&mut self, v: &Variant) -> P { let id = self.new_id(v.node.id); let kind; match v.node.kind { TupleVariantKind(ref variant_args) => { kind = TupleVariantKind(variant_args.iter().map(|x| fold_variant_arg_(x, self)).collect()) } StructVariantKind(ref struct_def) => { kind = StructVariantKind(@ast::StructDef { fields: struct_def.fields.iter() .map(|f| self.fold_struct_field(f)).collect(), ctor_id: struct_def.ctor_id.map(|c| self.new_id(c)) }) } } let attrs = v.node.attrs.iter().map(|x| fold_attribute_(*x, self)).collect(); let de = match v.node.disr_expr { Some(e) => Some(self.fold_expr(e)), None => None }; let node = ast::Variant_ { name: v.node.name, attrs: attrs, kind: kind, id: id, disr_expr: de, vis: v.node.vis, }; P(Spanned { node: node, span: self.new_span(v.span), }) } fn fold_ident(&mut self, i: Ident) -> Ident { i } fn fold_path(&mut self, p: &Path) -> Path { ast::Path { span: self.new_span(p.span), global: p.global, segments: p.segments.iter().map(|segment| ast::PathSegment { identifier: self.fold_ident(segment.identifier), lifetimes: segment.lifetimes.iter().map(|l| self.fold_lifetime(l)).collect(), types: segment.types.iter().map(|&typ| self.fold_ty(typ)).collect(), }).collect() } } fn fold_local(&mut self, l: @Local) -> @Local { let id = self.new_id(l.id); // Needs to be first, for ast_map. @Local { id: id, ty: self.fold_ty(l.ty), pat: self.fold_pat(l.pat), init: l.init.map(|e| self.fold_expr(e)), span: self.new_span(l.span), } } fn fold_mac(&mut self, macro: &Mac) -> Mac { Spanned { node: match macro.node { MacInvocTT(ref p, ref tts, ctxt) => { MacInvocTT(self.fold_path(p), fold_tts(tts.as_slice(), self), ctxt) } }, span: self.new_span(macro.span) } } fn map_exprs(&self, f: |@Expr| -> @Expr, es: &[@Expr]) -> Vec<@Expr> { es.iter().map(|x| f(*x)).collect() } fn new_id(&mut self, i: NodeId) -> NodeId { i } fn new_span(&mut self, sp: Span) -> Span { sp } fn fold_explicit_self(&mut self, es: &ExplicitSelf) -> ExplicitSelf { Spanned { span: self.new_span(es.span), node: self.fold_explicit_self_(&es.node) } } fn fold_explicit_self_(&mut self, es: &ExplicitSelf_) -> ExplicitSelf_ { match *es { SelfStatic | SelfValue | SelfUniq => *es, SelfRegion(ref lifetime, m) => { SelfRegion(fold_opt_lifetime(lifetime, self), m) } } } fn fold_lifetime(&mut self, l: &Lifetime) -> Lifetime { noop_fold_lifetime(l, self) } } /* some little folds that probably aren't useful to have in Folder itself*/ //used in noop_fold_item and noop_fold_crate and noop_fold_crate_directive fn fold_meta_item_(mi: @MetaItem, fld: &mut T) -> @MetaItem { @Spanned { node: match mi.node { MetaWord(ref id) => MetaWord((*id).clone()), MetaList(ref id, ref mis) => { MetaList((*id).clone(), mis.iter().map(|e| fold_meta_item_(*e, fld)).collect()) } MetaNameValue(ref id, ref s) => { MetaNameValue((*id).clone(), (*s).clone()) } }, span: fld.new_span(mi.span) } } //used in noop_fold_item and noop_fold_crate fn fold_attribute_(at: Attribute, fld: &mut T) -> Attribute { Spanned { span: fld.new_span(at.span), node: ast::Attribute_ { style: at.node.style, value: fold_meta_item_(at.node.value, fld), is_sugared_doc: at.node.is_sugared_doc } } } //used in noop_fold_foreign_item and noop_fold_fn_decl fn fold_arg_(a: &Arg, fld: &mut T) -> Arg { let id = fld.new_id(a.id); // Needs to be first, for ast_map. Arg { id: id, ty: fld.fold_ty(a.ty), pat: fld.fold_pat(a.pat), } } // build a new vector of tts by appling the Folder's fold_ident to // all of the identifiers in the token trees. // // This is part of hygiene magic. As far as hygiene is concerned, there // are three types of let pattern bindings or loop labels: // - those defined and used in non-macro part of the program // - those used as part of macro invocation arguments // - those defined and used inside macro definitions // Lexically, type 1 and 2 are in one group and type 3 the other. If they // clash, in order for let and loop label to work hygienically, one group // or the other needs to be renamed. The problem is that type 2 and 3 are // parsed together (inside the macro expand function). After being parsed and // AST being constructed, they can no longer be distinguished from each other. // // For that reason, type 2 let bindings and loop labels are actually renamed // in the form of tokens instead of AST nodes, here. There are wasted effort // since many token::IDENT are not necessary part of let bindings and most // token::LIFETIME are certainly not loop labels. But we can't tell in their // token form. So this is less ideal and hacky but it works. pub fn fold_tts(tts: &[TokenTree], fld: &mut T) -> Vec { tts.iter().map(|tt| { match *tt { TTTok(span, ref tok) => TTTok(span,maybe_fold_ident(tok,fld)), TTDelim(ref tts) => TTDelim(Rc::new(fold_tts(tts.as_slice(), fld))), TTSeq(span, ref pattern, ref sep, is_optional) => TTSeq(span, Rc::new(fold_tts(pattern.as_slice(), fld)), sep.as_ref().map(|tok|maybe_fold_ident(tok,fld)), is_optional), TTNonterminal(sp,ref ident) => TTNonterminal(sp,fld.fold_ident(*ident)) } }).collect() } // apply ident folder if it's an ident, otherwise leave it alone fn maybe_fold_ident(t: &token::Token, fld: &mut T) -> token::Token { match *t { token::IDENT(id, followed_by_colons) => { token::IDENT(fld.fold_ident(id), followed_by_colons) } token::LIFETIME(id) => token::LIFETIME(fld.fold_ident(id)), _ => (*t).clone() } } pub fn noop_fold_fn_decl(decl: &FnDecl, fld: &mut T) -> P { P(FnDecl { inputs: decl.inputs.iter().map(|x| fold_arg_(x, fld)).collect(), // bad copy output: fld.fold_ty(decl.output), cf: decl.cf, variadic: decl.variadic }) } fn fold_ty_param_bound(tpb: &TyParamBound, fld: &mut T) -> TyParamBound { match *tpb { TraitTyParamBound(ref ty) => TraitTyParamBound(fold_trait_ref(ty, fld)), RegionTyParamBound => RegionTyParamBound } } pub fn fold_ty_param(tp: &TyParam, fld: &mut T) -> TyParam { let id = fld.new_id(tp.id); TyParam { ident: tp.ident, id: id, bounds: tp.bounds.map(|x| fold_ty_param_bound(x, fld)), default: tp.default.map(|x| fld.fold_ty(x)) } } pub fn fold_ty_params(tps: &OwnedSlice, fld: &mut T) -> OwnedSlice { tps.map(|tp| fold_ty_param(tp, fld)) } pub fn noop_fold_lifetime(l: &Lifetime, fld: &mut T) -> Lifetime { let id = fld.new_id(l.id); Lifetime { id: id, span: fld.new_span(l.span), name: l.name } } pub fn fold_lifetimes(lts: &Vec, fld: &mut T) -> Vec { lts.iter().map(|l| fld.fold_lifetime(l)).collect() } pub fn fold_opt_lifetime(o_lt: &Option, fld: &mut T) -> Option { o_lt.as_ref().map(|lt| fld.fold_lifetime(lt)) } pub fn fold_generics(generics: &Generics, fld: &mut T) -> Generics { Generics {ty_params: fold_ty_params(&generics.ty_params, fld), lifetimes: fold_lifetimes(&generics.lifetimes, fld)} } fn fold_struct_def(struct_def: @StructDef, fld: &mut T) -> @StructDef { @ast::StructDef { fields: struct_def.fields.iter().map(|f| fold_struct_field(f, fld)).collect(), ctor_id: struct_def.ctor_id.map(|cid| fld.new_id(cid)), } } fn fold_trait_ref(p: &TraitRef, fld: &mut T) -> TraitRef { let id = fld.new_id(p.ref_id); ast::TraitRef { path: fld.fold_path(&p.path), ref_id: id, } } fn fold_struct_field(f: &StructField, fld: &mut T) -> StructField { let id = fld.new_id(f.node.id); Spanned { node: ast::StructField_ { kind: f.node.kind, id: id, ty: fld.fold_ty(f.node.ty), attrs: f.node.attrs.iter().map(|a| fold_attribute_(*a, fld)).collect(), }, span: fld.new_span(f.span), } } fn fold_field_(field: Field, folder: &mut T) -> Field { ast::Field { ident: respan(field.ident.span, folder.fold_ident(field.ident.node)), expr: folder.fold_expr(field.expr), span: folder.new_span(field.span), } } fn fold_mt(mt: &MutTy, folder: &mut T) -> MutTy { MutTy { ty: folder.fold_ty(mt.ty), mutbl: mt.mutbl, } } fn fold_opt_bounds(b: &Option>, folder: &mut T) -> Option> { b.as_ref().map(|bounds| { bounds.map(|bound| { fold_ty_param_bound(bound, folder) }) }) } fn fold_variant_arg_(va: &VariantArg, folder: &mut T) -> VariantArg { let id = folder.new_id(va.id); ast::VariantArg { ty: folder.fold_ty(va.ty), id: id, } } pub fn noop_fold_view_item(vi: &ViewItem, folder: &mut T) -> ViewItem{ let inner_view_item = match vi.node { ViewItemExternCrate(ref ident, ref string, node_id) => { ViewItemExternCrate(ident.clone(), (*string).clone(), folder.new_id(node_id)) } ViewItemUse(ref view_paths) => { ViewItemUse(folder.fold_view_paths(view_paths.as_slice())) } }; ViewItem { node: inner_view_item, attrs: vi.attrs.iter().map(|a| fold_attribute_(*a, folder)).collect(), vis: vi.vis, span: folder.new_span(vi.span), } } pub fn noop_fold_block(b: P, folder: &mut T) -> P { let id = folder.new_id(b.id); // Needs to be first, for ast_map. let view_items = b.view_items.iter().map(|x| folder.fold_view_item(x)).collect(); let stmts = b.stmts.iter().flat_map(|s| folder.fold_stmt(*s).move_iter()).collect(); P(Block { id: id, view_items: view_items, stmts: stmts, expr: b.expr.map(|x| folder.fold_expr(x)), rules: b.rules, span: folder.new_span(b.span), }) } pub fn noop_fold_item_underscore(i: &Item_, folder: &mut T) -> Item_ { match *i { ItemStatic(t, m, e) => { ItemStatic(folder.fold_ty(t), m, folder.fold_expr(e)) } ItemFn(decl, fn_style, abi, ref generics, body) => { ItemFn( folder.fold_fn_decl(decl), fn_style, abi, fold_generics(generics, folder), folder.fold_block(body) ) } ItemMod(ref m) => ItemMod(folder.fold_mod(m)), ItemForeignMod(ref nm) => ItemForeignMod(folder.fold_foreign_mod(nm)), ItemTy(t, ref generics) => { ItemTy(folder.fold_ty(t), fold_generics(generics, folder)) } ItemEnum(ref enum_definition, ref generics) => { ItemEnum( ast::EnumDef { variants: enum_definition.variants.iter().map(|&x| { folder.fold_variant(x) }).collect(), }, fold_generics(generics, folder)) } ItemStruct(ref struct_def, ref generics) => { let struct_def = fold_struct_def(*struct_def, folder); ItemStruct(struct_def, fold_generics(generics, folder)) } ItemImpl(ref generics, ref ifce, ty, ref methods) => { ItemImpl(fold_generics(generics, folder), ifce.as_ref().map(|p| fold_trait_ref(p, folder)), folder.fold_ty(ty), methods.iter().map(|x| folder.fold_method(*x)).collect() ) } ItemTrait(ref generics, ref traits, ref methods) => { let methods = methods.iter().map(|method| { match *method { Required(ref m) => Required(folder.fold_type_method(m)), Provided(method) => Provided(folder.fold_method(method)) } }).collect(); ItemTrait(fold_generics(generics, folder), traits.iter().map(|p| fold_trait_ref(p, folder)).collect(), methods) } ItemMac(ref m) => ItemMac(folder.fold_mac(m)), } } pub fn noop_fold_type_method(m: &TypeMethod, fld: &mut T) -> TypeMethod { let id = fld.new_id(m.id); // Needs to be first, for ast_map. TypeMethod { id: id, ident: fld.fold_ident(m.ident), attrs: m.attrs.iter().map(|a| fold_attribute_(*a, fld)).collect(), fn_style: m.fn_style, decl: fld.fold_fn_decl(m.decl), generics: fold_generics(&m.generics, fld), explicit_self: fld.fold_explicit_self(&m.explicit_self), span: fld.new_span(m.span), } } pub fn noop_fold_mod(m: &Mod, folder: &mut T) -> Mod { ast::Mod { view_items: m.view_items .iter() .map(|x| folder.fold_view_item(x)).collect(), items: m.items.iter().flat_map(|x| folder.fold_item(*x).move_iter()).collect(), } } pub fn noop_fold_crate(c: Crate, folder: &mut T) -> Crate { Crate { module: folder.fold_mod(&c.module), attrs: c.attrs.iter().map(|x| fold_attribute_(*x, folder)).collect(), config: c.config.iter().map(|x| fold_meta_item_(*x, folder)).collect(), span: folder.new_span(c.span), } } pub fn noop_fold_item(i: &Item, folder: &mut T) -> SmallVector<@Item> { let id = folder.new_id(i.id); // Needs to be first, for ast_map. let node = folder.fold_item_underscore(&i.node); let ident = match node { // The node may have changed, recompute the "pretty" impl name. ItemImpl(_, ref maybe_trait, ty, _) => { ast_util::impl_pretty_name(maybe_trait, ty) } _ => i.ident }; SmallVector::one(@Item { id: id, ident: folder.fold_ident(ident), attrs: i.attrs.iter().map(|e| fold_attribute_(*e, folder)).collect(), node: node, vis: i.vis, span: folder.new_span(i.span) }) } pub fn noop_fold_foreign_item(ni: &ForeignItem, folder: &mut T) -> @ForeignItem { let id = folder.new_id(ni.id); // Needs to be first, for ast_map. @ForeignItem { id: id, ident: folder.fold_ident(ni.ident), attrs: ni.attrs.iter().map(|x| fold_attribute_(*x, folder)).collect(), node: match ni.node { ForeignItemFn(ref fdec, ref generics) => { ForeignItemFn(P(FnDecl { inputs: fdec.inputs.iter().map(|a| fold_arg_(a, folder)).collect(), output: folder.fold_ty(fdec.output), cf: fdec.cf, variadic: fdec.variadic }), fold_generics(generics, folder)) } ForeignItemStatic(t, m) => { ForeignItemStatic(folder.fold_ty(t), m) } }, span: folder.new_span(ni.span), vis: ni.vis, } } pub fn noop_fold_method(m: &Method, folder: &mut T) -> @Method { let id = folder.new_id(m.id); // Needs to be first, for ast_map. @Method { id: id, ident: folder.fold_ident(m.ident), attrs: m.attrs.iter().map(|a| fold_attribute_(*a, folder)).collect(), generics: fold_generics(&m.generics, folder), explicit_self: folder.fold_explicit_self(&m.explicit_self), fn_style: m.fn_style, decl: folder.fold_fn_decl(m.decl), body: folder.fold_block(m.body), span: folder.new_span(m.span), vis: m.vis } } pub fn noop_fold_pat(p: @Pat, folder: &mut T) -> @Pat { let id = folder.new_id(p.id); let node = match p.node { PatWild => PatWild, PatWildMulti => PatWildMulti, PatIdent(binding_mode, ref pth, ref sub) => { PatIdent(binding_mode, folder.fold_path(pth), sub.map(|x| folder.fold_pat(x))) } PatLit(e) => PatLit(folder.fold_expr(e)), PatEnum(ref pth, ref pats) => { PatEnum(folder.fold_path(pth), pats.as_ref().map(|pats| pats.iter().map(|x| folder.fold_pat(*x)).collect())) } PatStruct(ref pth, ref fields, etc) => { let pth_ = folder.fold_path(pth); let fs = fields.iter().map(|f| { ast::FieldPat { ident: f.ident, pat: folder.fold_pat(f.pat) } }).collect(); PatStruct(pth_, fs, etc) } PatTup(ref elts) => PatTup(elts.iter().map(|x| folder.fold_pat(*x)).collect()), PatUniq(inner) => PatUniq(folder.fold_pat(inner)), PatRegion(inner) => PatRegion(folder.fold_pat(inner)), PatRange(e1, e2) => { PatRange(folder.fold_expr(e1), folder.fold_expr(e2)) }, PatVec(ref before, ref slice, ref after) => { PatVec(before.iter().map(|x| folder.fold_pat(*x)).collect(), slice.map(|x| folder.fold_pat(x)), after.iter().map(|x| folder.fold_pat(*x)).collect()) } }; @Pat { id: id, span: folder.new_span(p.span), node: node, } } pub fn noop_fold_expr(e: @Expr, folder: &mut T) -> @Expr { let id = folder.new_id(e.id); let node = match e.node { ExprVstore(e, v) => { ExprVstore(folder.fold_expr(e), v) } ExprBox(p, e) => { ExprBox(folder.fold_expr(p), folder.fold_expr(e)) } ExprVec(ref exprs) => { ExprVec(exprs.iter().map(|&x| folder.fold_expr(x)).collect()) } ExprRepeat(expr, count) => { ExprRepeat(folder.fold_expr(expr), folder.fold_expr(count)) } ExprTup(ref elts) => ExprTup(elts.iter().map(|x| folder.fold_expr(*x)).collect()), ExprCall(f, ref args) => { ExprCall(folder.fold_expr(f), args.iter().map(|&x| folder.fold_expr(x)).collect()) } ExprMethodCall(i, ref tps, ref args) => { ExprMethodCall( folder.fold_ident(i), tps.iter().map(|&x| folder.fold_ty(x)).collect(), args.iter().map(|&x| folder.fold_expr(x)).collect()) } ExprBinary(binop, lhs, rhs) => { ExprBinary(binop, folder.fold_expr(lhs), folder.fold_expr(rhs)) } ExprUnary(binop, ohs) => { ExprUnary(binop, folder.fold_expr(ohs)) } ExprLit(_) => e.node.clone(), ExprCast(expr, ty) => { ExprCast(folder.fold_expr(expr), folder.fold_ty(ty)) } ExprAddrOf(m, ohs) => ExprAddrOf(m, folder.fold_expr(ohs)), ExprIf(cond, tr, fl) => { ExprIf(folder.fold_expr(cond), folder.fold_block(tr), fl.map(|x| folder.fold_expr(x))) } ExprWhile(cond, body) => { ExprWhile(folder.fold_expr(cond), folder.fold_block(body)) } ExprForLoop(pat, iter, body, ref maybe_ident) => { ExprForLoop(folder.fold_pat(pat), folder.fold_expr(iter), folder.fold_block(body), maybe_ident.map(|i| folder.fold_ident(i))) } ExprLoop(body, opt_ident) => { ExprLoop(folder.fold_block(body), opt_ident.map(|x| folder.fold_ident(x))) } ExprMatch(expr, ref arms) => { ExprMatch(folder.fold_expr(expr), arms.iter().map(|x| folder.fold_arm(x)).collect()) } ExprFnBlock(decl, body) => { ExprFnBlock(folder.fold_fn_decl(decl), folder.fold_block(body)) } ExprProc(decl, body) => { ExprProc(folder.fold_fn_decl(decl), folder.fold_block(body)) } ExprBlock(blk) => ExprBlock(folder.fold_block(blk)), ExprAssign(el, er) => { ExprAssign(folder.fold_expr(el), folder.fold_expr(er)) } ExprAssignOp(op, el, er) => { ExprAssignOp(op, folder.fold_expr(el), folder.fold_expr(er)) } ExprField(el, id, ref tys) => { ExprField(folder.fold_expr(el), folder.fold_ident(id), tys.iter().map(|&x| folder.fold_ty(x)).collect()) } ExprIndex(el, er) => { ExprIndex(folder.fold_expr(el), folder.fold_expr(er)) } ExprPath(ref pth) => ExprPath(folder.fold_path(pth)), ExprBreak(opt_ident) => ExprBreak(opt_ident.map(|x| folder.fold_ident(x))), ExprAgain(opt_ident) => ExprAgain(opt_ident.map(|x| folder.fold_ident(x))), ExprRet(ref e) => { ExprRet(e.map(|x| folder.fold_expr(x))) } ExprInlineAsm(ref a) => { ExprInlineAsm(InlineAsm { inputs: a.inputs.iter().map(|&(ref c, input)| { ((*c).clone(), folder.fold_expr(input)) }).collect(), outputs: a.outputs.iter().map(|&(ref c, out)| { ((*c).clone(), folder.fold_expr(out)) }).collect(), .. (*a).clone() }) } ExprMac(ref mac) => ExprMac(folder.fold_mac(mac)), ExprStruct(ref path, ref fields, maybe_expr) => { ExprStruct(folder.fold_path(path), fields.iter().map(|x| fold_field_(*x, folder)).collect(), maybe_expr.map(|x| folder.fold_expr(x))) }, ExprParen(ex) => ExprParen(folder.fold_expr(ex)) }; @Expr { id: id, node: node, span: folder.new_span(e.span), } } pub fn noop_fold_stmt(s: &Stmt, folder: &mut T) -> SmallVector<@Stmt> { let nodes = match s.node { StmtDecl(d, id) => { let id = folder.new_id(id); folder.fold_decl(d).move_iter() .map(|d| StmtDecl(d, id)) .collect() } StmtExpr(e, id) => { let id = folder.new_id(id); SmallVector::one(StmtExpr(folder.fold_expr(e), id)) } StmtSemi(e, id) => { let id = folder.new_id(id); SmallVector::one(StmtSemi(folder.fold_expr(e), id)) } StmtMac(ref mac, semi) => SmallVector::one(StmtMac(folder.fold_mac(mac), semi)) }; nodes.move_iter().map(|node| @Spanned { node: node, span: folder.new_span(s.span), }).collect() } #[cfg(test)] mod test { use std::io; use ast; use util::parser_testing::{string_to_crate, matches_codepattern}; use parse::token; use print::pprust; use super::*; // this version doesn't care about getting comments or docstrings in. fn fake_print_crate(s: &mut pprust::State, krate: &ast::Crate) -> io::IoResult<()> { s.print_mod(&krate.module, krate.attrs.as_slice()) } // change every identifier to "zz" struct ToZzIdentFolder; impl Folder for ToZzIdentFolder { fn fold_ident(&mut self, _: ast::Ident) -> ast::Ident { token::str_to_ident("zz") } } // maybe add to expand.rs... macro_rules! assert_pred ( ($pred:expr, $predname:expr, $a:expr , $b:expr) => ( { let pred_val = $pred; let a_val = $a; let b_val = $b; if !(pred_val(a_val,b_val)) { fail!("expected args satisfying {}, got {:?} and {:?}", $predname, a_val, b_val); } } ) ) // make sure idents get transformed everywhere #[test] fn ident_transformation () { let mut zz_fold = ToZzIdentFolder; let ast = string_to_crate( ~"#[a] mod b {fn c (d : e, f : g) {h!(i,j,k);l;m}}"); let folded_crate = zz_fold.fold_crate(ast); assert_pred!(matches_codepattern, "matches_codepattern", pprust::to_str(|s| fake_print_crate(s, &folded_crate)), ~"#[a]mod zz{fn zz(zz:zz,zz:zz){zz!(zz,zz,zz);zz;zz}}"); } // even inside macro defs.... #[test] fn ident_transformation_in_defs () { let mut zz_fold = ToZzIdentFolder; let ast = string_to_crate( ~"macro_rules! a {(b $c:expr $(d $e:token)f+ => \ (g $(d $d $e)+))} "); let folded_crate = zz_fold.fold_crate(ast); assert_pred!(matches_codepattern, "matches_codepattern", pprust::to_str(|s| fake_print_crate(s, &folded_crate)), ~"zz!zz((zz$zz:zz$(zz $zz:zz)zz+=>(zz$(zz$zz$zz)+)))"); } }