import Option.none; import Option.some; import Util.orb; type vbuf = rustrt.vbuf; type operator2[T,U,V] = fn(&T, &U) -> V; type array[T] = vec[mutable? T]; native "rust" mod rustrt { type vbuf; fn vec_buf[T](vec[T] v, uint offset) -> vbuf; fn vec_len[T](vec[T] v) -> uint; /** * Sometimes we modify the vec internal data via vec_buf and need to * update the vec's fill length accordingly. */ fn vec_len_set[T](vec[T] v, uint n); /** * The T in vec_alloc[T, U] is the type of the vec to allocate. The * U is the type of an element in the vec. So to allocate a vec[U] we * want to invoke this as vec_alloc[vec[U], U]. */ fn vec_alloc[T, U](uint n_elts) -> vec[U]; fn vec_alloc_mut[T, U](uint n_elts) -> vec[mutable U]; fn refcount[T](vec[T] v) -> uint; fn vec_print_debug_info[T](vec[T] v); fn vec_from_vbuf[T](vbuf v, uint n_elts) -> vec[T]; fn unsafe_vec_to_mut[T](vec[T] v) -> vec[mutable T]; } fn alloc[T](uint n_elts) -> vec[T] { ret rustrt.vec_alloc[vec[T], T](n_elts); } fn alloc_mut[T](uint n_elts) -> vec[mutable T] { ret rustrt.vec_alloc_mut[vec[mutable T], T](n_elts); } fn refcount[T](array[T] v) -> uint { auto r = rustrt.refcount[T](v); if (r == Dbg.const_refcount) { ret r; } else { // -1 because calling this function incremented the refcount. ret r - 1u; } } fn vec_from_vbuf[T](vbuf v, uint n_elts) -> vec[T] { ret rustrt.vec_from_vbuf[T](v, n_elts); } // FIXME: Remove me; this is a botch to get around rustboot's bad typechecker. fn empty[T]() -> vec[T] { ret alloc[T](0u); } // FIXME: Remove me; this is a botch to get around rustboot's bad typechecker. fn empty_mut[T]() -> vec[mutable T] { ret alloc_mut[T](0u); } type init_op[T] = fn(uint i) -> T; fn init_fn[T](&init_op[T] op, uint n_elts) -> vec[T] { let vec[T] v = alloc[T](n_elts); let uint i = 0u; while (i < n_elts) { v += vec(op(i)); i += 1u; } ret v; } fn init_fn_mut[T](&init_op[T] op, uint n_elts) -> vec[mutable T] { let vec[mutable T] v = alloc_mut[T](n_elts); let uint i = 0u; while (i < n_elts) { v += vec(mutable op(i)); i += 1u; } ret v; } fn init_elt[T](&T t, uint n_elts) -> vec[T] { /** * FIXME (issue #81): should be: * * fn elt_op[T](&T x, uint i) -> T { ret x; } * let init_op[T] inner = bind elt_op[T](t, _); * ret init_fn[T](inner, n_elts); */ let vec[T] v = alloc[T](n_elts); let uint i = n_elts; while (i > 0u) { i -= 1u; v += vec(t); } ret v; } fn init_elt_mut[T](&T t, uint n_elts) -> vec[mutable T] { let vec[mutable T] v = alloc_mut[T](n_elts); let uint i = n_elts; while (i > 0u) { i -= 1u; v += vec(mutable t); } ret v; } fn buf[T](array[T] v) -> vbuf { ret rustrt.vec_buf[T](v, 0u); } fn len[T](array[T] v) -> uint { ret rustrt.vec_len[T](v); } fn len_set[T](array[T] v, uint n) { rustrt.vec_len_set[T](v, n); } fn buf_off[T](array[T] v, uint offset) -> vbuf { assert (offset < len[T](v)); ret rustrt.vec_buf[T](v, offset); } fn print_debug_info[T](array[T] v) { rustrt.vec_print_debug_info[T](v); } // Returns the last element of v. fn last[T](array[T] v) -> Option.t[T] { auto l = len[T](v); if (l == 0u) { ret none[T]; } ret some[T](v.(l - 1u)); } // Returns elements from [start..end) from v. fn slice[T](array[T] v, uint start, uint end) -> vec[T] { assert (start <= end); assert (end <= len[T](v)); auto result = alloc[T](end - start); let uint i = start; while (i < end) { result += vec(v.(i)); i += 1u; } ret result; } fn shift[T](&mutable array[T] v) -> T { auto ln = len[T](v); assert (ln > 0u); auto e = v.(0); v = slice[T](v, 1u, ln); ret e; } fn pop[T](&mutable array[T] v) -> T { auto ln = len[T](v); assert (ln > 0u); ln -= 1u; auto e = v.(ln); v = slice[T](v, 0u, ln); ret e; } fn push[T](&mutable array[T] v, &T t) { v += vec(t); } fn unshift[T](&mutable array[T] v, &T t) { auto res = alloc[T](len[T](v) + 1u); res += vec(t); res += v; v = res; } fn grow[T](&array[T] v, uint n, &T initval) { let uint i = n; while (i > 0u) { i -= 1u; v += vec(initval); } } fn grow_set[T](&vec[mutable T] v, uint index, &T initval, &T val) { auto length = Vec.len(v); if (index >= length) { grow(v, index - length + 1u, initval); } v.(index) = val; } fn map[T, U](&Option.operator[T,U] f, &array[T] v) -> vec[U] { let vec[U] u = alloc[U](len[T](v)); for (T ve in v) { u += vec(f(ve)); } ret u; } fn map2[T,U,V](&operator2[T,U,V] f, &array[T] v0, &array[U] v1) -> vec[V] { auto v0_len = len[T](v0); if (v0_len != len[U](v1)) { fail; } let vec[V] u = alloc[V](v0_len); auto i = 0u; while (i < v0_len) { u += vec(f(v0.(i), v1.(i))); i += 1u; } ret u; } fn find[T](fn (&T) -> bool f, &array[T] v) -> Option.t[T] { for (T elt in v) { if (f(elt)) { ret some[T](elt); } } ret none[T]; } fn foldl[T, U](fn (&U, &T) -> U p, &U z, &vec[T] v) -> U { auto sz = len[T](v); if (sz == 0u) { ret z; } else { auto rest = slice[T](v, 1u, sz); ret (p(foldl[T,U](p, z, rest), v.(0))); } } fn unzip[T, U](&vec[tup(T, U)] v) -> tup(vec[T], vec[U]) { auto sz = len[tup(T, U)](v); if (sz == 0u) { ret tup(alloc[T](0u), alloc[U](0u)); } else { auto rest = slice[tup(T, U)](v, 1u, sz); auto tl = unzip[T, U](rest); auto a = vec(v.(0)._0); auto b = vec(v.(0)._1); ret tup(a + tl._0, b + tl._1); } } fn or(&vec[bool] v) -> bool { auto f = orb; ret Vec.foldl[bool, bool](f, false, v); } fn clone[T](&vec[T] v) -> vec[T] { ret slice[T](v, 0u, len[T](v)); } fn plus_option[T](&vec[T] v, &Option.t[T] o) -> () { alt (o) { case (none[T]) {} case (some[T](?x)) { v += vec(x); } } } fn cat_options[T](&vec[Option.t[T]] v) -> vec[T] { let vec[T] res = vec(); for (Option.t[T] o in v) { alt (o) { case (none[T]) { } case (some[T](?t)) { res += vec(t); } } } ret res; } // TODO: Remove in favor of built-in "freeze" operation when it's implemented. fn freeze[T](vec[mutable T] v) -> vec[T] { let vec[T] result = vec(); for (T elem in v) { result += vec(elem); } ret result; } // Local Variables: // mode: rust; // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // compile-command: "make -k -C .. 2>&1 | sed -e 's/\\/x\\//x:\\//g'"; // End: