// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. // Functions dealing with attributes and meta items pub use self::StabilityLevel::*; pub use self::ReprAttr::*; pub use self::IntType::*; use ast; use ast::{AttrId, Attribute, Name, Ident, Path, PathSegment}; use ast::{MetaItem, MetaItemKind, NestedMetaItem, NestedMetaItemKind}; use ast::{Lit, LitKind, Expr, ExprKind, Item, Local, Stmt, StmtKind, GenericParam}; use codemap::{BytePos, Spanned, respan, dummy_spanned}; use syntax_pos::Span; use errors::{Applicability, Handler}; use feature_gate::{Features, GatedCfg}; use parse::lexer::comments::{doc_comment_style, strip_doc_comment_decoration}; use parse::parser::Parser; use parse::{self, ParseSess, PResult}; use parse::token::{self, Token}; use ptr::P; use symbol::Symbol; use tokenstream::{TokenStream, TokenTree, Delimited}; use util::ThinVec; use GLOBALS; use std::iter; enum AttrError { MultipleItem(Name), UnknownMetaItem(Name), MissingSince, MissingFeature, MultipleStabilityLevels, UnsupportedLiteral } fn handle_errors(diag: &Handler, span: Span, error: AttrError) { match error { AttrError::MultipleItem(item) => span_err!(diag, span, E0538, "multiple '{}' items", item), AttrError::UnknownMetaItem(item) => span_err!(diag, span, E0541, "unknown meta item '{}'", item), AttrError::MissingSince => span_err!(diag, span, E0542, "missing 'since'"), AttrError::MissingFeature => span_err!(diag, span, E0546, "missing 'feature'"), AttrError::MultipleStabilityLevels => span_err!(diag, span, E0544, "multiple stability levels"), AttrError::UnsupportedLiteral => span_err!(diag, span, E0565, "unsupported literal"), } } pub fn mark_used(attr: &Attribute) { debug!("Marking {:?} as used.", attr); let AttrId(id) = attr.id; GLOBALS.with(|globals| { let mut slot = globals.used_attrs.lock(); let idx = (id / 64) as usize; let shift = id % 64; if slot.len() <= idx { slot.resize(idx + 1, 0); } slot[idx] |= 1 << shift; }); } pub fn is_used(attr: &Attribute) -> bool { let AttrId(id) = attr.id; GLOBALS.with(|globals| { let slot = globals.used_attrs.lock(); let idx = (id / 64) as usize; let shift = id % 64; slot.get(idx).map(|bits| bits & (1 << shift) != 0) .unwrap_or(false) }) } pub fn mark_known(attr: &Attribute) { debug!("Marking {:?} as known.", attr); let AttrId(id) = attr.id; GLOBALS.with(|globals| { let mut slot = globals.known_attrs.lock(); let idx = (id / 64) as usize; let shift = id % 64; if slot.len() <= idx { slot.resize(idx + 1, 0); } slot[idx] |= 1 << shift; }); } pub fn is_known(attr: &Attribute) -> bool { let AttrId(id) = attr.id; GLOBALS.with(|globals| { let slot = globals.known_attrs.lock(); let idx = (id / 64) as usize; let shift = id % 64; slot.get(idx).map(|bits| bits & (1 << shift) != 0) .unwrap_or(false) }) } const RUST_KNOWN_TOOL: &[&str] = &["clippy", "rustfmt"]; pub fn is_known_tool(attr: &Attribute) -> bool { let tool_name = attr.path.segments.iter().next().expect("empty path in attribute").ident.name; RUST_KNOWN_TOOL.contains(&tool_name.as_str().as_ref()) } impl NestedMetaItem { /// Returns the MetaItem if self is a NestedMetaItemKind::MetaItem. pub fn meta_item(&self) -> Option<&MetaItem> { match self.node { NestedMetaItemKind::MetaItem(ref item) => Some(item), _ => None } } /// Returns the Lit if self is a NestedMetaItemKind::Literal. pub fn literal(&self) -> Option<&Lit> { match self.node { NestedMetaItemKind::Literal(ref lit) => Some(lit), _ => None } } /// Returns the Span for `self`. pub fn span(&self) -> Span { self.span } /// Returns true if this list item is a MetaItem with a name of `name`. pub fn check_name(&self, name: &str) -> bool { self.meta_item().map_or(false, |meta_item| meta_item.check_name(name)) } /// Returns the name of the meta item, e.g. `foo` in `#[foo]`, /// `#[foo="bar"]` and `#[foo(bar)]`, if self is a MetaItem pub fn name(&self) -> Option { self.meta_item().and_then(|meta_item| Some(meta_item.name())) } /// Gets the string value if self is a MetaItem and the MetaItem is a /// MetaItemKind::NameValue variant containing a string, otherwise None. pub fn value_str(&self) -> Option { self.meta_item().and_then(|meta_item| meta_item.value_str()) } /// Returns a name and single literal value tuple of the MetaItem. pub fn name_value_literal(&self) -> Option<(Name, &Lit)> { self.meta_item().and_then( |meta_item| meta_item.meta_item_list().and_then( |meta_item_list| { if meta_item_list.len() == 1 { let nested_item = &meta_item_list[0]; if nested_item.is_literal() { Some((meta_item.name(), nested_item.literal().unwrap())) } else { None } } else { None }})) } /// Returns a MetaItem if self is a MetaItem with Kind Word. pub fn word(&self) -> Option<&MetaItem> { self.meta_item().and_then(|meta_item| if meta_item.is_word() { Some(meta_item) } else { None }) } /// Gets a list of inner meta items from a list MetaItem type. pub fn meta_item_list(&self) -> Option<&[NestedMetaItem]> { self.meta_item().and_then(|meta_item| meta_item.meta_item_list()) } /// Returns `true` if the variant is MetaItem. pub fn is_meta_item(&self) -> bool { self.meta_item().is_some() } /// Returns `true` if the variant is Literal. pub fn is_literal(&self) -> bool { self.literal().is_some() } /// Returns `true` if self is a MetaItem and the meta item is a word. pub fn is_word(&self) -> bool { self.word().is_some() } /// Returns `true` if self is a MetaItem and the meta item is a ValueString. pub fn is_value_str(&self) -> bool { self.value_str().is_some() } /// Returns `true` if self is a MetaItem and the meta item is a list. pub fn is_meta_item_list(&self) -> bool { self.meta_item_list().is_some() } } fn name_from_path(path: &Path) -> Name { path.segments.last().expect("empty path in attribute").ident.name } impl Attribute { pub fn check_name(&self, name: &str) -> bool { let matches = self.path == name; if matches { mark_used(self); } matches } /// Returns the **last** segment of the name of this attribute. /// E.g. `foo` for `#[foo]`, `skip` for `#[rustfmt::skip]`. pub fn name(&self) -> Name { name_from_path(&self.path) } pub fn value_str(&self) -> Option { self.meta().and_then(|meta| meta.value_str()) } pub fn meta_item_list(&self) -> Option> { match self.meta() { Some(MetaItem { node: MetaItemKind::List(list), .. }) => Some(list), _ => None } } pub fn is_word(&self) -> bool { self.path.segments.len() == 1 && self.tokens.is_empty() } pub fn span(&self) -> Span { self.span } pub fn is_meta_item_list(&self) -> bool { self.meta_item_list().is_some() } /// Indicates if the attribute is a Value String. pub fn is_value_str(&self) -> bool { self.value_str().is_some() } pub fn is_scoped(&self) -> bool { self.path.segments.len() > 1 } } impl MetaItem { pub fn name(&self) -> Name { name_from_path(&self.ident) } pub fn value_str(&self) -> Option { match self.node { MetaItemKind::NameValue(ref v) => { match v.node { LitKind::Str(ref s, _) => Some(*s), _ => None, } }, _ => None } } pub fn meta_item_list(&self) -> Option<&[NestedMetaItem]> { match self.node { MetaItemKind::List(ref l) => Some(&l[..]), _ => None } } pub fn is_word(&self) -> bool { match self.node { MetaItemKind::Word => true, _ => false, } } pub fn span(&self) -> Span { self.span } pub fn check_name(&self, name: &str) -> bool { self.name() == name } pub fn is_value_str(&self) -> bool { self.value_str().is_some() } pub fn is_meta_item_list(&self) -> bool { self.meta_item_list().is_some() } } impl Attribute { /// Extract the MetaItem from inside this Attribute. pub fn meta(&self) -> Option { let mut tokens = self.tokens.trees().peekable(); Some(MetaItem { ident: self.path.clone(), node: if let Some(node) = MetaItemKind::from_tokens(&mut tokens) { if tokens.peek().is_some() { return None; } node } else { return None; }, span: self.span, }) } pub fn parse<'a, T, F>(&self, sess: &'a ParseSess, mut f: F) -> PResult<'a, T> where F: FnMut(&mut Parser<'a>) -> PResult<'a, T>, { let mut parser = Parser::new(sess, self.tokens.clone(), None, false, false); let result = f(&mut parser)?; if parser.token != token::Eof { parser.unexpected()?; } Ok(result) } pub fn parse_list<'a, T, F>(&self, sess: &'a ParseSess, mut f: F) -> PResult<'a, Vec> where F: FnMut(&mut Parser<'a>) -> PResult<'a, T>, { if self.tokens.is_empty() { return Ok(Vec::new()); } self.parse(sess, |parser| { parser.expect(&token::OpenDelim(token::Paren))?; let mut list = Vec::new(); while !parser.eat(&token::CloseDelim(token::Paren)) { list.push(f(parser)?); if !parser.eat(&token::Comma) { parser.expect(&token::CloseDelim(token::Paren))?; break } } Ok(list) }) } pub fn parse_meta<'a>(&self, sess: &'a ParseSess) -> PResult<'a, MetaItem> { Ok(MetaItem { ident: self.path.clone(), node: self.parse(sess, |parser| parser.parse_meta_item_kind())?, span: self.span, }) } /// Convert self to a normal #[doc="foo"] comment, if it is a /// comment like `///` or `/** */`. (Returns self unchanged for /// non-sugared doc attributes.) pub fn with_desugared_doc(&self, f: F) -> T where F: FnOnce(&Attribute) -> T, { if self.is_sugared_doc { let comment = self.value_str().unwrap(); let meta = mk_name_value_item_str( Ident::from_str("doc"), dummy_spanned(Symbol::intern(&strip_doc_comment_decoration(&comment.as_str())))); let mut attr = if self.style == ast::AttrStyle::Outer { mk_attr_outer(self.span, self.id, meta) } else { mk_attr_inner(self.span, self.id, meta) }; attr.is_sugared_doc = true; f(&attr) } else { f(self) } } } /* Constructors */ pub fn mk_name_value_item_str(ident: Ident, value: Spanned) -> MetaItem { let value = respan(value.span, LitKind::Str(value.node, ast::StrStyle::Cooked)); mk_name_value_item(ident.span.to(value.span), ident, value) } pub fn mk_name_value_item(span: Span, ident: Ident, value: ast::Lit) -> MetaItem { MetaItem { ident: Path::from_ident(ident), span, node: MetaItemKind::NameValue(value) } } pub fn mk_list_item(span: Span, ident: Ident, items: Vec) -> MetaItem { MetaItem { ident: Path::from_ident(ident), span, node: MetaItemKind::List(items) } } pub fn mk_word_item(ident: Ident) -> MetaItem { MetaItem { ident: Path::from_ident(ident), span: ident.span, node: MetaItemKind::Word } } pub fn mk_nested_word_item(ident: Ident) -> NestedMetaItem { respan(ident.span, NestedMetaItemKind::MetaItem(mk_word_item(ident))) } pub fn mk_attr_id() -> AttrId { use std::sync::atomic::AtomicUsize; use std::sync::atomic::Ordering; static NEXT_ATTR_ID: AtomicUsize = AtomicUsize::new(0); let id = NEXT_ATTR_ID.fetch_add(1, Ordering::SeqCst); assert!(id != ::std::usize::MAX); AttrId(id) } /// Returns an inner attribute with the given value. pub fn mk_attr_inner(span: Span, id: AttrId, item: MetaItem) -> Attribute { mk_spanned_attr_inner(span, id, item) } /// Returns an inner attribute with the given value and span. pub fn mk_spanned_attr_inner(sp: Span, id: AttrId, item: MetaItem) -> Attribute { Attribute { id, style: ast::AttrStyle::Inner, path: item.ident, tokens: item.node.tokens(item.span), is_sugared_doc: false, span: sp, } } /// Returns an outer attribute with the given value. pub fn mk_attr_outer(span: Span, id: AttrId, item: MetaItem) -> Attribute { mk_spanned_attr_outer(span, id, item) } /// Returns an outer attribute with the given value and span. pub fn mk_spanned_attr_outer(sp: Span, id: AttrId, item: MetaItem) -> Attribute { Attribute { id, style: ast::AttrStyle::Outer, path: item.ident, tokens: item.node.tokens(item.span), is_sugared_doc: false, span: sp, } } pub fn mk_sugared_doc_attr(id: AttrId, text: Symbol, span: Span) -> Attribute { let style = doc_comment_style(&text.as_str()); let lit = respan(span, LitKind::Str(text, ast::StrStyle::Cooked)); Attribute { id, style, path: Path::from_ident(Ident::from_str("doc").with_span_pos(span)), tokens: MetaItemKind::NameValue(lit).tokens(span), is_sugared_doc: true, span, } } pub fn list_contains_name(items: &[NestedMetaItem], name: &str) -> bool { items.iter().any(|item| { item.check_name(name) }) } pub fn contains_name(attrs: &[Attribute], name: &str) -> bool { attrs.iter().any(|item| { item.check_name(name) }) } pub fn find_by_name<'a>(attrs: &'a [Attribute], name: &str) -> Option<&'a Attribute> { attrs.iter().find(|attr| attr.check_name(name)) } pub fn first_attr_value_str_by_name(attrs: &[Attribute], name: &str) -> Option { attrs.iter() .find(|at| at.check_name(name)) .and_then(|at| at.value_str()) } /// Check if `attrs` contains an attribute like `#![feature(feature_name)]`. /// This will not perform any "sanity checks" on the form of the attributes. pub fn contains_feature_attr(attrs: &[Attribute], feature_name: &str) -> bool { attrs.iter().any(|item| { item.check_name("feature") && item.meta_item_list().map(|list| { list.iter().any(|mi| { mi.word().map(|w| w.name() == feature_name) .unwrap_or(false) }) }).unwrap_or(false) }) } /* Higher-level applications */ pub fn find_crate_name(attrs: &[Attribute]) -> Option { first_attr_value_str_by_name(attrs, "crate_name") } #[derive(Copy, Clone, Hash, PartialEq, RustcEncodable, RustcDecodable)] pub enum InlineAttr { None, Hint, Always, Never, } #[derive(Copy, Clone, PartialEq)] pub enum UnwindAttr { Allowed, Aborts, } /// Determine what `#[unwind]` attribute is present in `attrs`, if any. pub fn find_unwind_attr(diagnostic: Option<&Handler>, attrs: &[Attribute]) -> Option { let syntax_error = |attr: &Attribute| { mark_used(attr); diagnostic.map(|d| { span_err!(d, attr.span, E0633, "malformed `#[unwind]` attribute"); }); None }; attrs.iter().fold(None, |ia, attr| { if attr.path != "unwind" { return ia; } let meta = match attr.meta() { Some(meta) => meta.node, None => return ia, }; match meta { MetaItemKind::Word => { syntax_error(attr) } MetaItemKind::List(ref items) => { mark_used(attr); if items.len() != 1 { syntax_error(attr) } else if list_contains_name(&items[..], "allowed") { Some(UnwindAttr::Allowed) } else if list_contains_name(&items[..], "aborts") { Some(UnwindAttr::Aborts) } else { syntax_error(attr) } } _ => ia, } }) } /// Tests if a cfg-pattern matches the cfg set pub fn cfg_matches(cfg: &ast::MetaItem, sess: &ParseSess, features: Option<&Features>) -> bool { eval_condition(cfg, sess, &mut |cfg| { if let (Some(feats), Some(gated_cfg)) = (features, GatedCfg::gate(cfg)) { gated_cfg.check_and_emit(sess, feats); } sess.config.contains(&(cfg.name(), cfg.value_str())) }) } /// Evaluate a cfg-like condition (with `any` and `all`), using `eval` to /// evaluate individual items. pub fn eval_condition(cfg: &ast::MetaItem, sess: &ParseSess, eval: &mut F) -> bool where F: FnMut(&ast::MetaItem) -> bool { match cfg.node { ast::MetaItemKind::List(ref mis) => { for mi in mis.iter() { if !mi.is_meta_item() { handle_errors(&sess.span_diagnostic, mi.span, AttrError::UnsupportedLiteral); return false; } } // The unwraps below may look dangerous, but we've already asserted // that they won't fail with the loop above. match &*cfg.name().as_str() { "any" => mis.iter().any(|mi| { eval_condition(mi.meta_item().unwrap(), sess, eval) }), "all" => mis.iter().all(|mi| { eval_condition(mi.meta_item().unwrap(), sess, eval) }), "not" => { if mis.len() != 1 { span_err!(sess.span_diagnostic, cfg.span, E0536, "expected 1 cfg-pattern"); return false; } !eval_condition(mis[0].meta_item().unwrap(), sess, eval) }, p => { span_err!(sess.span_diagnostic, cfg.span, E0537, "invalid predicate `{}`", p); false } } }, ast::MetaItemKind::Word | ast::MetaItemKind::NameValue(..) => { eval(cfg) } } } /// Represents the #[stable], #[unstable], #[rustc_{deprecated,const_unstable}] attributes. #[derive(RustcEncodable, RustcDecodable, Clone, Debug, PartialEq, Eq, Hash)] pub struct Stability { pub level: StabilityLevel, pub feature: Symbol, pub rustc_depr: Option, pub rustc_const_unstable: Option, } /// The available stability levels. #[derive(RustcEncodable, RustcDecodable, PartialEq, PartialOrd, Clone, Debug, Eq, Hash)] pub enum StabilityLevel { // Reason for the current stability level and the relevant rust-lang issue Unstable { reason: Option, issue: u32 }, Stable { since: Symbol }, } #[derive(RustcEncodable, RustcDecodable, PartialEq, PartialOrd, Clone, Debug, Eq, Hash)] pub struct RustcDeprecation { pub since: Symbol, pub reason: Symbol, } #[derive(RustcEncodable, RustcDecodable, PartialEq, PartialOrd, Clone, Debug, Eq, Hash)] pub struct RustcConstUnstable { pub feature: Symbol, } #[derive(RustcEncodable, RustcDecodable, PartialEq, PartialOrd, Clone, Debug, Eq, Hash)] pub struct Deprecation { pub since: Option, pub note: Option, } impl StabilityLevel { pub fn is_unstable(&self) -> bool { if let Unstable {..} = *self { true } else { false }} pub fn is_stable(&self) -> bool { if let Stable {..} = *self { true } else { false }} } fn find_stability_generic<'a, I>(diagnostic: &Handler, attrs_iter: I, item_sp: Span) -> Option where I: Iterator { let mut stab: Option = None; let mut rustc_depr: Option = None; let mut rustc_const_unstable: Option = None; 'outer: for attr in attrs_iter { if ![ "rustc_deprecated", "rustc_const_unstable", "unstable", "stable", ].iter().any(|&s| attr.path == s) { continue // not a stability level } mark_used(attr); let meta = attr.meta(); if let Some(MetaItem { node: MetaItemKind::List(ref metas), .. }) = meta { let meta = meta.as_ref().unwrap(); let get = |meta: &MetaItem, item: &mut Option| { if item.is_some() { handle_errors(diagnostic, meta.span, AttrError::MultipleItem(meta.name())); return false } if let Some(v) = meta.value_str() { *item = Some(v); true } else { span_err!(diagnostic, meta.span, E0539, "incorrect meta item"); false } }; macro_rules! get_meta { ($($name:ident),+) => { $( let mut $name = None; )+ for meta in metas { if let Some(mi) = meta.meta_item() { match &*mi.name().as_str() { $( stringify!($name) => if !get(mi, &mut $name) { continue 'outer }, )+ _ => { handle_errors(diagnostic, mi.span, AttrError::UnknownMetaItem(mi.name())); continue 'outer } } } else { handle_errors(diagnostic, meta.span, AttrError::UnsupportedLiteral); continue 'outer } } } } match &*meta.name().as_str() { "rustc_deprecated" => { if rustc_depr.is_some() { span_err!(diagnostic, item_sp, E0540, "multiple rustc_deprecated attributes"); continue 'outer } get_meta!(since, reason); match (since, reason) { (Some(since), Some(reason)) => { rustc_depr = Some(RustcDeprecation { since, reason, }) } (None, _) => { handle_errors(diagnostic, attr.span(), AttrError::MissingSince); continue } _ => { span_err!(diagnostic, attr.span(), E0543, "missing 'reason'"); continue } } } "rustc_const_unstable" => { if rustc_const_unstable.is_some() { span_err!(diagnostic, item_sp, E0553, "multiple rustc_const_unstable attributes"); continue 'outer } get_meta!(feature); if let Some(feature) = feature { rustc_const_unstable = Some(RustcConstUnstable { feature }); } else { span_err!(diagnostic, attr.span(), E0629, "missing 'feature'"); continue } } "unstable" => { if stab.is_some() { handle_errors(diagnostic, attr.span(), AttrError::MultipleStabilityLevels); break } let mut feature = None; let mut reason = None; let mut issue = None; for meta in metas { if let Some(mi) = meta.meta_item() { match &*mi.name().as_str() { "feature" => if !get(mi, &mut feature) { continue 'outer }, "reason" => if !get(mi, &mut reason) { continue 'outer }, "issue" => if !get(mi, &mut issue) { continue 'outer }, _ => { handle_errors(diagnostic, meta.span, AttrError::UnknownMetaItem(mi.name())); continue 'outer } } } else { handle_errors(diagnostic, meta.span, AttrError::UnsupportedLiteral); continue 'outer } } match (feature, reason, issue) { (Some(feature), reason, Some(issue)) => { stab = Some(Stability { level: Unstable { reason, issue: { if let Ok(issue) = issue.as_str().parse() { issue } else { span_err!(diagnostic, attr.span(), E0545, "incorrect 'issue'"); continue } } }, feature, rustc_depr: None, rustc_const_unstable: None, }) } (None, _, _) => { handle_errors(diagnostic, attr.span(), AttrError::MissingFeature); continue } _ => { span_err!(diagnostic, attr.span(), E0547, "missing 'issue'"); continue } } } "stable" => { if stab.is_some() { handle_errors(diagnostic, attr.span(), AttrError::MultipleStabilityLevels); break } let mut feature = None; let mut since = None; for meta in metas { if let NestedMetaItemKind::MetaItem(ref mi) = meta.node { match &*mi.name().as_str() { "feature" => if !get(mi, &mut feature) { continue 'outer }, "since" => if !get(mi, &mut since) { continue 'outer }, _ => { handle_errors(diagnostic, meta.span, AttrError::UnknownMetaItem(mi.name())); continue 'outer } } } else { handle_errors(diagnostic, meta.span, AttrError::UnsupportedLiteral); continue 'outer } } match (feature, since) { (Some(feature), Some(since)) => { stab = Some(Stability { level: Stable { since, }, feature, rustc_depr: None, rustc_const_unstable: None, }) } (None, _) => { handle_errors(diagnostic, attr.span(), AttrError::MissingFeature); continue } _ => { handle_errors(diagnostic, attr.span(), AttrError::MissingSince); continue } } } _ => unreachable!() } } else { span_err!(diagnostic, attr.span(), E0548, "incorrect stability attribute type"); continue } } // Merge the deprecation info into the stability info if let Some(rustc_depr) = rustc_depr { if let Some(ref mut stab) = stab { stab.rustc_depr = Some(rustc_depr); } else { span_err!(diagnostic, item_sp, E0549, "rustc_deprecated attribute must be paired with \ either stable or unstable attribute"); } } // Merge the const-unstable info into the stability info if let Some(rustc_const_unstable) = rustc_const_unstable { if let Some(ref mut stab) = stab { stab.rustc_const_unstable = Some(rustc_const_unstable); } else { span_err!(diagnostic, item_sp, E0630, "rustc_const_unstable attribute must be paired with \ either stable or unstable attribute"); } } stab } fn find_deprecation_generic<'a, I>(diagnostic: &Handler, attrs_iter: I, item_sp: Span) -> Option where I: Iterator { let mut depr: Option = None; 'outer: for attr in attrs_iter { if attr.path != "deprecated" { continue } mark_used(attr); if depr.is_some() { span_err!(diagnostic, item_sp, E0550, "multiple deprecated attributes"); break } depr = if let Some(metas) = attr.meta_item_list() { let get = |meta: &MetaItem, item: &mut Option| { if item.is_some() { handle_errors(diagnostic, meta.span, AttrError::MultipleItem(meta.name())); return false } if let Some(v) = meta.value_str() { *item = Some(v); true } else { span_err!(diagnostic, meta.span, E0551, "incorrect meta item"); false } }; let mut since = None; let mut note = None; for meta in metas { if let NestedMetaItemKind::MetaItem(ref mi) = meta.node { match &*mi.name().as_str() { "since" => if !get(mi, &mut since) { continue 'outer }, "note" => if !get(mi, &mut note) { continue 'outer }, _ => { handle_errors(diagnostic, meta.span, AttrError::UnknownMetaItem(mi.name())); continue 'outer } } } else { handle_errors(diagnostic, meta.span, AttrError::UnsupportedLiteral); continue 'outer } } Some(Deprecation {since: since, note: note}) } else { Some(Deprecation{since: None, note: None}) } } depr } /// Find the first stability attribute. `None` if none exists. pub fn find_stability(diagnostic: &Handler, attrs: &[Attribute], item_sp: Span) -> Option { find_stability_generic(diagnostic, attrs.iter(), item_sp) } /// Find the deprecation attribute. `None` if none exists. pub fn find_deprecation(diagnostic: &Handler, attrs: &[Attribute], item_sp: Span) -> Option { find_deprecation_generic(diagnostic, attrs.iter(), item_sp) } /// Parse #[repr(...)] forms. /// /// Valid repr contents: any of the primitive integral type names (see /// `int_type_of_word`, below) to specify enum discriminant type; `C`, to use /// the same discriminant size that the corresponding C enum would or C /// structure layout, `packed` to remove padding, and `transparent` to elegate representation /// concerns to the only non-ZST field. pub fn find_repr_attrs(diagnostic: &Handler, attr: &Attribute) -> Vec { let mut acc = Vec::new(); if attr.path == "repr" { if let Some(items) = attr.meta_item_list() { mark_used(attr); for item in items { if !item.is_meta_item() { handle_errors(diagnostic, item.span, AttrError::UnsupportedLiteral); continue } let mut recognised = false; if let Some(mi) = item.word() { let word = &*mi.name().as_str(); let hint = match word { "C" => Some(ReprC), "packed" => Some(ReprPacked(1)), "simd" => Some(ReprSimd), "transparent" => Some(ReprTransparent), _ => match int_type_of_word(word) { Some(ity) => Some(ReprInt(ity)), None => { None } } }; if let Some(h) = hint { recognised = true; acc.push(h); } } else if let Some((name, value)) = item.name_value_literal() { let parse_alignment = |node: &ast::LitKind| -> Result { if let ast::LitKind::Int(literal, ast::LitIntType::Unsuffixed) = node { if literal.is_power_of_two() { // rustc::ty::layout::Align restricts align to <= 2^29 if *literal <= 1 << 29 { Ok(*literal as u32) } else { Err("larger than 2^29") } } else { Err("not a power of two") } } else { Err("not an unsuffixed integer") } }; let mut literal_error = None; if name == "align" { recognised = true; match parse_alignment(&value.node) { Ok(literal) => acc.push(ReprAlign(literal)), Err(message) => literal_error = Some(message) }; } else if name == "packed" { recognised = true; match parse_alignment(&value.node) { Ok(literal) => acc.push(ReprPacked(literal)), Err(message) => literal_error = Some(message) }; } if let Some(literal_error) = literal_error { span_err!(diagnostic, item.span, E0589, "invalid `repr(align)` attribute: {}", literal_error); } } else { if let Some(meta_item) = item.meta_item() { if meta_item.name() == "align" { if let MetaItemKind::NameValue(ref value) = meta_item.node { recognised = true; let mut err = struct_span_err!(diagnostic, item.span, E0693, "incorrect `repr(align)` attribute format"); match value.node { ast::LitKind::Int(int, ast::LitIntType::Unsuffixed) => { err.span_suggestion_with_applicability( item.span, "use parentheses instead", format!("align({})", int), Applicability::MachineApplicable ); } ast::LitKind::Str(s, _) => { err.span_suggestion_with_applicability( item.span, "use parentheses instead", format!("align({})", s), Applicability::MachineApplicable ); } _ => {} } err.emit(); } } } } if !recognised { // Not a word we recognize span_err!(diagnostic, item.span, E0552, "unrecognized representation hint"); } } } } acc } fn int_type_of_word(s: &str) -> Option { match s { "i8" => Some(SignedInt(ast::IntTy::I8)), "u8" => Some(UnsignedInt(ast::UintTy::U8)), "i16" => Some(SignedInt(ast::IntTy::I16)), "u16" => Some(UnsignedInt(ast::UintTy::U16)), "i32" => Some(SignedInt(ast::IntTy::I32)), "u32" => Some(UnsignedInt(ast::UintTy::U32)), "i64" => Some(SignedInt(ast::IntTy::I64)), "u64" => Some(UnsignedInt(ast::UintTy::U64)), "i128" => Some(SignedInt(ast::IntTy::I128)), "u128" => Some(UnsignedInt(ast::UintTy::U128)), "isize" => Some(SignedInt(ast::IntTy::Isize)), "usize" => Some(UnsignedInt(ast::UintTy::Usize)), _ => None } } #[derive(PartialEq, Debug, RustcEncodable, RustcDecodable, Copy, Clone)] pub enum ReprAttr { ReprInt(IntType), ReprC, ReprPacked(u32), ReprSimd, ReprTransparent, ReprAlign(u32), } #[derive(Eq, Hash, PartialEq, Debug, RustcEncodable, RustcDecodable, Copy, Clone)] pub enum IntType { SignedInt(ast::IntTy), UnsignedInt(ast::UintTy) } impl IntType { #[inline] pub fn is_signed(self) -> bool { match self { SignedInt(..) => true, UnsignedInt(..) => false } } } impl MetaItem { fn tokens(&self) -> TokenStream { let mut idents = vec![]; let mut last_pos = BytePos(0 as u32); for (i, segment) in self.ident.segments.iter().enumerate() { let is_first = i == 0; if !is_first { let mod_sep_span = Span::new(last_pos, segment.ident.span.lo(), segment.ident.span.ctxt()); idents.push(TokenTree::Token(mod_sep_span, Token::ModSep).into()); } idents.push(TokenTree::Token(segment.ident.span, Token::from_ast_ident(segment.ident)).into()); last_pos = segment.ident.span.hi(); } idents.push(self.node.tokens(self.span)); TokenStream::concat(idents) } fn from_tokens(tokens: &mut iter::Peekable) -> Option where I: Iterator, { // FIXME: Share code with `parse_path`. let ident = match tokens.next() { Some(TokenTree::Token(span, Token::Ident(ident, _))) => { if let Some(TokenTree::Token(_, Token::ModSep)) = tokens.peek() { let mut segments = vec![PathSegment::from_ident(ident.with_span_pos(span))]; tokens.next(); loop { if let Some(TokenTree::Token(span, Token::Ident(ident, _))) = tokens.next() { segments.push(PathSegment::from_ident(ident.with_span_pos(span))); } else { return None; } if let Some(TokenTree::Token(_, Token::ModSep)) = tokens.peek() { tokens.next(); } else { break; } } let span = span.with_hi(segments.last().unwrap().ident.span.hi()); Path { span, segments } } else { Path::from_ident(ident.with_span_pos(span)) } } Some(TokenTree::Token(_, Token::Interpolated(ref nt))) => match nt.0 { token::Nonterminal::NtIdent(ident, _) => Path::from_ident(ident), token::Nonterminal::NtMeta(ref meta) => return Some(meta.clone()), token::Nonterminal::NtPath(ref path) => path.clone(), _ => return None, }, _ => return None, }; let list_closing_paren_pos = tokens.peek().map(|tt| tt.span().hi()); let node = MetaItemKind::from_tokens(tokens)?; let hi = match node { MetaItemKind::NameValue(ref lit) => lit.span.hi(), MetaItemKind::List(..) => list_closing_paren_pos.unwrap_or(ident.span.hi()), _ => ident.span.hi(), }; let span = ident.span.with_hi(hi); Some(MetaItem { ident, node, span }) } } impl MetaItemKind { pub fn tokens(&self, span: Span) -> TokenStream { match *self { MetaItemKind::Word => TokenStream::empty(), MetaItemKind::NameValue(ref lit) => { TokenStream::concat(vec![TokenTree::Token(span, Token::Eq).into(), lit.tokens()]) } MetaItemKind::List(ref list) => { let mut tokens = Vec::new(); for (i, item) in list.iter().enumerate() { if i > 0 { tokens.push(TokenTree::Token(span, Token::Comma).into()); } tokens.push(item.node.tokens()); } TokenTree::Delimited(span, Delimited { delim: token::Paren, tts: TokenStream::concat(tokens).into(), }).into() } } } fn from_tokens(tokens: &mut iter::Peekable) -> Option where I: Iterator, { let delimited = match tokens.peek().cloned() { Some(TokenTree::Token(_, token::Eq)) => { tokens.next(); return if let Some(TokenTree::Token(span, token)) = tokens.next() { LitKind::from_token(token) .map(|lit| MetaItemKind::NameValue(Spanned { node: lit, span: span })) } else { None }; } Some(TokenTree::Delimited(_, ref delimited)) if delimited.delim == token::Paren => { tokens.next(); delimited.stream() } _ => return Some(MetaItemKind::Word), }; let mut tokens = delimited.into_trees().peekable(); let mut result = Vec::new(); while let Some(..) = tokens.peek() { let item = NestedMetaItemKind::from_tokens(&mut tokens)?; result.push(respan(item.span(), item)); match tokens.next() { None | Some(TokenTree::Token(_, Token::Comma)) => {} _ => return None, } } Some(MetaItemKind::List(result)) } } impl NestedMetaItemKind { fn span(&self) -> Span { match *self { NestedMetaItemKind::MetaItem(ref item) => item.span, NestedMetaItemKind::Literal(ref lit) => lit.span, } } fn tokens(&self) -> TokenStream { match *self { NestedMetaItemKind::MetaItem(ref item) => item.tokens(), NestedMetaItemKind::Literal(ref lit) => lit.tokens(), } } fn from_tokens(tokens: &mut iter::Peekable) -> Option where I: Iterator, { if let Some(TokenTree::Token(span, token)) = tokens.peek().cloned() { if let Some(node) = LitKind::from_token(token) { tokens.next(); return Some(NestedMetaItemKind::Literal(respan(span, node))); } } MetaItem::from_tokens(tokens).map(NestedMetaItemKind::MetaItem) } } impl Lit { fn tokens(&self) -> TokenStream { TokenTree::Token(self.span, self.node.token()).into() } } impl LitKind { fn token(&self) -> Token { use std::ascii; match *self { LitKind::Str(string, ast::StrStyle::Cooked) => { let escaped = string.as_str().escape_default(); Token::Literal(token::Lit::Str_(Symbol::intern(&escaped)), None) } LitKind::Str(string, ast::StrStyle::Raw(n)) => { Token::Literal(token::Lit::StrRaw(string, n), None) } LitKind::ByteStr(ref bytes) => { let string = bytes.iter().cloned().flat_map(ascii::escape_default) .map(Into::::into).collect::(); Token::Literal(token::Lit::ByteStr(Symbol::intern(&string)), None) } LitKind::Byte(byte) => { let string: String = ascii::escape_default(byte).map(Into::::into).collect(); Token::Literal(token::Lit::Byte(Symbol::intern(&string)), None) } LitKind::Char(ch) => { let string: String = ch.escape_default().map(Into::::into).collect(); Token::Literal(token::Lit::Char(Symbol::intern(&string)), None) } LitKind::Int(n, ty) => { let suffix = match ty { ast::LitIntType::Unsigned(ty) => Some(Symbol::intern(ty.ty_to_string())), ast::LitIntType::Signed(ty) => Some(Symbol::intern(ty.ty_to_string())), ast::LitIntType::Unsuffixed => None, }; Token::Literal(token::Lit::Integer(Symbol::intern(&n.to_string())), suffix) } LitKind::Float(symbol, ty) => { Token::Literal(token::Lit::Float(symbol), Some(Symbol::intern(ty.ty_to_string()))) } LitKind::FloatUnsuffixed(symbol) => Token::Literal(token::Lit::Float(symbol), None), LitKind::Bool(value) => Token::Ident(Ident::with_empty_ctxt(Symbol::intern(if value { "true" } else { "false" })), false), } } fn from_token(token: Token) -> Option { match token { Token::Ident(ident, false) if ident.name == "true" => Some(LitKind::Bool(true)), Token::Ident(ident, false) if ident.name == "false" => Some(LitKind::Bool(false)), Token::Interpolated(ref nt) => match nt.0 { token::NtExpr(ref v) | token::NtLiteral(ref v) => match v.node { ExprKind::Lit(ref lit) => Some(lit.node.clone()), _ => None, }, _ => None, }, Token::Literal(lit, suf) => { let (suffix_illegal, result) = parse::lit_token(lit, suf, None); if suffix_illegal && suf.is_some() { return None; } result } _ => None, } } } pub trait HasAttrs: Sized { fn attrs(&self) -> &[ast::Attribute]; fn map_attrs) -> Vec>(self, f: F) -> Self; } impl HasAttrs for Spanned { fn attrs(&self) -> &[ast::Attribute] { self.node.attrs() } fn map_attrs) -> Vec>(self, f: F) -> Self { respan(self.span, self.node.map_attrs(f)) } } impl HasAttrs for Vec { fn attrs(&self) -> &[Attribute] { self } fn map_attrs) -> Vec>(self, f: F) -> Self { f(self) } } impl HasAttrs for ThinVec { fn attrs(&self) -> &[Attribute] { self } fn map_attrs) -> Vec>(self, f: F) -> Self { f(self.into()).into() } } impl HasAttrs for P { fn attrs(&self) -> &[Attribute] { (**self).attrs() } fn map_attrs) -> Vec>(self, f: F) -> Self { self.map(|t| t.map_attrs(f)) } } impl HasAttrs for StmtKind { fn attrs(&self) -> &[Attribute] { match *self { StmtKind::Local(ref local) => local.attrs(), StmtKind::Item(..) => &[], StmtKind::Expr(ref expr) | StmtKind::Semi(ref expr) => expr.attrs(), StmtKind::Mac(ref mac) => { let (_, _, ref attrs) = **mac; attrs.attrs() } } } fn map_attrs) -> Vec>(self, f: F) -> Self { match self { StmtKind::Local(local) => StmtKind::Local(local.map_attrs(f)), StmtKind::Item(..) => self, StmtKind::Expr(expr) => StmtKind::Expr(expr.map_attrs(f)), StmtKind::Semi(expr) => StmtKind::Semi(expr.map_attrs(f)), StmtKind::Mac(mac) => StmtKind::Mac(mac.map(|(mac, style, attrs)| { (mac, style, attrs.map_attrs(f)) })), } } } impl HasAttrs for Stmt { fn attrs(&self) -> &[ast::Attribute] { self.node.attrs() } fn map_attrs) -> Vec>(self, f: F) -> Self { Stmt { id: self.id, node: self.node.map_attrs(f), span: self.span } } } impl HasAttrs for GenericParam { fn attrs(&self) -> &[ast::Attribute] { match self { GenericParam::Lifetime(lifetime) => lifetime.attrs(), GenericParam::Type(ty) => ty.attrs(), } } fn map_attrs) -> Vec>(self, f: F) -> Self { match self { GenericParam::Lifetime(lifetime) => GenericParam::Lifetime(lifetime.map_attrs(f)), GenericParam::Type(ty) => GenericParam::Type(ty.map_attrs(f)), } } } macro_rules! derive_has_attrs { ($($ty:path),*) => { $( impl HasAttrs for $ty { fn attrs(&self) -> &[Attribute] { &self.attrs } fn map_attrs(mut self, f: F) -> Self where F: FnOnce(Vec) -> Vec, { self.attrs = self.attrs.map_attrs(f); self } } )* } } derive_has_attrs! { Item, Expr, Local, ast::ForeignItem, ast::StructField, ast::ImplItem, ast::TraitItem, ast::Arm, ast::Field, ast::FieldPat, ast::Variant_, ast::LifetimeDef, ast::TyParam }