//! Type inference, i.e. the process of walking through the code and determining //! the type of each expression and pattern. //! //! For type inference, compare the implementations in rustc (the various //! check_* methods in rustc_hir_analysis/check/mod.rs are a good entry point) and //! IntelliJ-Rust (org.rust.lang.core.types.infer). Our entry point for //! inference here is the `infer` function, which infers the types of all //! expressions in a given function. //! //! During inference, types (i.e. the `Ty` struct) can contain type 'variables' //! which represent currently unknown types; as we walk through the expressions, //! we might determine that certain variables need to be equal to each other, or //! to certain types. To record this, we use the union-find implementation from //! the `ena` crate, which is extracted from rustc. mod cast; pub(crate) mod closure; mod coerce; mod expr; mod mutability; mod pat; mod path; pub(crate) mod unify; use std::{convert::identity, ops::Index}; use chalk_ir::{ cast::Cast, fold::TypeFoldable, interner::HasInterner, DebruijnIndex, Mutability, Safety, Scalar, TyKind, TypeFlags, }; use either::Either; use hir_def::{ body::Body, builtin_type::{BuiltinInt, BuiltinType, BuiltinUint}, data::{ConstData, StaticData}, hir::LabelId, hir::{BindingAnnotation, BindingId, ExprId, ExprOrPatId, PatId}, lang_item::{LangItem, LangItemTarget}, layout::Integer, path::{ModPath, Path}, resolver::{HasResolver, ResolveValueResult, Resolver, TypeNs, ValueNs}, type_ref::TypeRef, AdtId, AssocItemId, DefWithBodyId, FieldId, FunctionId, ItemContainerId, Lookup, TraitId, TupleFieldId, TupleId, TypeAliasId, VariantId, }; use hir_expand::name::{name, Name}; use indexmap::IndexSet; use la_arena::{ArenaMap, Entry}; use rustc_hash::{FxHashMap, FxHashSet}; use stdx::{always, never}; use triomphe::Arc; use crate::{ db::HirDatabase, fold_tys, infer::coerce::CoerceMany, lower::ImplTraitLoweringMode, static_lifetime, to_assoc_type_id, traits::FnTrait, utils::{InTypeConstIdMetadata, UnevaluatedConstEvaluatorFolder}, AliasEq, AliasTy, ClosureId, DomainGoal, GenericArg, Goal, ImplTraitId, InEnvironment, Interner, ProjectionTy, RpitId, Substitution, TraitEnvironment, TraitRef, Ty, TyBuilder, TyExt, }; // This lint has a false positive here. See the link below for details. // // https://github.com/rust-lang/rust/issues/57411 #[allow(unreachable_pub)] pub use coerce::could_coerce; #[allow(unreachable_pub)] pub use unify::could_unify; use cast::CastCheck; pub(crate) use closure::{CaptureKind, CapturedItem, CapturedItemWithoutTy}; /// The entry point of type inference. pub(crate) fn infer_query(db: &dyn HirDatabase, def: DefWithBodyId) -> Arc { let _p = profile::span("infer_query"); let resolver = def.resolver(db.upcast()); let body = db.body(def); let mut ctx = InferenceContext::new(db, def, &body, resolver); match def { DefWithBodyId::FunctionId(f) => { ctx.collect_fn(f); } DefWithBodyId::ConstId(c) => ctx.collect_const(&db.const_data(c)), DefWithBodyId::StaticId(s) => ctx.collect_static(&db.static_data(s)), DefWithBodyId::VariantId(v) => { ctx.return_ty = TyBuilder::builtin( match db.enum_data(v.lookup(db.upcast()).parent).variant_body_type() { hir_def::layout::IntegerType::Pointer(signed) => match signed { true => BuiltinType::Int(BuiltinInt::Isize), false => BuiltinType::Uint(BuiltinUint::Usize), }, hir_def::layout::IntegerType::Fixed(size, signed) => match signed { true => BuiltinType::Int(match size { Integer::I8 => BuiltinInt::I8, Integer::I16 => BuiltinInt::I16, Integer::I32 => BuiltinInt::I32, Integer::I64 => BuiltinInt::I64, Integer::I128 => BuiltinInt::I128, }), false => BuiltinType::Uint(match size { Integer::I8 => BuiltinUint::U8, Integer::I16 => BuiltinUint::U16, Integer::I32 => BuiltinUint::U32, Integer::I64 => BuiltinUint::U64, Integer::I128 => BuiltinUint::U128, }), }, }, ); } DefWithBodyId::InTypeConstId(c) => { // FIXME(const-generic-body): We should not get the return type in this way. ctx.return_ty = c .lookup(db.upcast()) .expected_ty .box_any() .downcast::() .unwrap() .0; } } ctx.infer_body(); ctx.infer_mut_body(); ctx.infer_closures(); Arc::new(ctx.resolve_all()) } /// Fully normalize all the types found within `ty` in context of `owner` body definition. /// /// This is appropriate to use only after type-check: it assumes /// that normalization will succeed, for example. pub(crate) fn normalize(db: &dyn HirDatabase, trait_env: Arc, ty: Ty) -> Ty { // FIXME: TypeFlags::HAS_CT_PROJECTION is not implemented in chalk, so TypeFlags::HAS_PROJECTION only // works for the type case, so we check array unconditionally. Remove the array part // when the bug in chalk becomes fixed. if !ty.data(Interner).flags.intersects(TypeFlags::HAS_PROJECTION) && !matches!(ty.kind(Interner), TyKind::Array(..)) { return ty; } let mut table = unify::InferenceTable::new(db, trait_env); let ty_with_vars = table.normalize_associated_types_in(ty); table.resolve_obligations_as_possible(); table.propagate_diverging_flag(); table.resolve_completely(ty_with_vars) } /// Binding modes inferred for patterns. /// #[derive(Copy, Clone, Debug, Eq, PartialEq, Default)] pub enum BindingMode { #[default] Move, Ref(Mutability), } impl BindingMode { fn convert(annotation: BindingAnnotation) -> BindingMode { match annotation { BindingAnnotation::Unannotated | BindingAnnotation::Mutable => BindingMode::Move, BindingAnnotation::Ref => BindingMode::Ref(Mutability::Not), BindingAnnotation::RefMut => BindingMode::Ref(Mutability::Mut), } } } #[derive(Debug)] pub(crate) struct InferOk { value: T, goals: Vec>, } impl InferOk { fn map(self, f: impl FnOnce(T) -> U) -> InferOk { InferOk { value: f(self.value), goals: self.goals } } } #[derive(Debug)] pub(crate) struct TypeError; pub(crate) type InferResult = Result, TypeError>; #[derive(Debug, PartialEq, Eq, Clone)] pub enum InferenceDiagnostic { NoSuchField { field: ExprOrPatId, private: bool, }, PrivateField { expr: ExprId, field: FieldId, }, PrivateAssocItem { id: ExprOrPatId, item: AssocItemId, }, UnresolvedField { expr: ExprId, receiver: Ty, name: Name, method_with_same_name_exists: bool, }, UnresolvedMethodCall { expr: ExprId, receiver: Ty, name: Name, /// Contains the type the field resolves to field_with_same_name: Option, assoc_func_with_same_name: Option, }, UnresolvedAssocItem { id: ExprOrPatId, }, // FIXME: This should be emitted in body lowering BreakOutsideOfLoop { expr: ExprId, is_break: bool, bad_value_break: bool, }, MismatchedArgCount { call_expr: ExprId, expected: usize, found: usize, }, MismatchedTupleStructPatArgCount { pat: ExprOrPatId, expected: usize, found: usize, }, ExpectedFunction { call_expr: ExprId, found: Ty, }, TypedHole { expr: ExprId, expected: Ty, }, } /// A mismatch between an expected and an inferred type. #[derive(Clone, PartialEq, Eq, Debug, Hash)] pub struct TypeMismatch { pub expected: Ty, pub actual: Ty, } #[derive(Clone, PartialEq, Eq, Debug)] struct InternedStandardTypes { unknown: Ty, bool_: Ty, unit: Ty, never: Ty, } impl Default for InternedStandardTypes { fn default() -> Self { InternedStandardTypes { unknown: TyKind::Error.intern(Interner), bool_: TyKind::Scalar(Scalar::Bool).intern(Interner), unit: TyKind::Tuple(0, Substitution::empty(Interner)).intern(Interner), never: TyKind::Never.intern(Interner), } } } /// Represents coercing a value to a different type of value. /// /// We transform values by following a number of `Adjust` steps in order. /// See the documentation on variants of `Adjust` for more details. /// /// Here are some common scenarios: /// /// 1. The simplest cases are where a pointer is not adjusted fat vs thin. /// Here the pointer will be dereferenced N times (where a dereference can /// happen to raw or borrowed pointers or any smart pointer which implements /// Deref, including Box<_>). The types of dereferences is given by /// `autoderefs`. It can then be auto-referenced zero or one times, indicated /// by `autoref`, to either a raw or borrowed pointer. In these cases unsize is /// `false`. /// /// 2. A thin-to-fat coercion involves unsizing the underlying data. We start /// with a thin pointer, deref a number of times, unsize the underlying data, /// then autoref. The 'unsize' phase may change a fixed length array to a /// dynamically sized one, a concrete object to a trait object, or statically /// sized struct to a dynamically sized one. E.g., &[i32; 4] -> &[i32] is /// represented by: /// /// ``` /// Deref(None) -> [i32; 4], /// Borrow(AutoBorrow::Ref) -> &[i32; 4], /// Unsize -> &[i32], /// ``` /// /// Note that for a struct, the 'deep' unsizing of the struct is not recorded. /// E.g., `struct Foo { it: T }` we can coerce &Foo<[i32; 4]> to &Foo<[i32]> /// The autoderef and -ref are the same as in the above example, but the type /// stored in `unsize` is `Foo<[i32]>`, we don't store any further detail about /// the underlying conversions from `[i32; 4]` to `[i32]`. /// /// 3. Coercing a `Box` to `Box` is an interesting special case. In /// that case, we have the pointer we need coming in, so there are no /// autoderefs, and no autoref. Instead we just do the `Unsize` transformation. /// At some point, of course, `Box` should move out of the compiler, in which /// case this is analogous to transforming a struct. E.g., Box<[i32; 4]> -> /// Box<[i32]> is an `Adjust::Unsize` with the target `Box<[i32]>`. #[derive(Clone, Debug, PartialEq, Eq, Hash)] pub struct Adjustment { pub kind: Adjust, pub target: Ty, } impl Adjustment { pub fn borrow(m: Mutability, ty: Ty) -> Self { let ty = TyKind::Ref(m, static_lifetime(), ty).intern(Interner); Adjustment { kind: Adjust::Borrow(AutoBorrow::Ref(m)), target: ty } } } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub enum Adjust { /// Go from ! to any type. NeverToAny, /// Dereference once, producing a place. Deref(Option), /// Take the address and produce either a `&` or `*` pointer. Borrow(AutoBorrow), Pointer(PointerCast), } /// An overloaded autoderef step, representing a `Deref(Mut)::deref(_mut)` /// call, with the signature `&'a T -> &'a U` or `&'a mut T -> &'a mut U`. /// The target type is `U` in both cases, with the region and mutability /// being those shared by both the receiver and the returned reference. /// /// Mutability is `None` when we are not sure. #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub struct OverloadedDeref(pub Option); #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub enum AutoBorrow { /// Converts from T to &T. Ref(Mutability), /// Converts from T to *T. RawPtr(Mutability), } impl AutoBorrow { fn mutability(self) -> Mutability { let (AutoBorrow::Ref(m) | AutoBorrow::RawPtr(m)) = self; m } } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub enum PointerCast { /// Go from a fn-item type to a fn-pointer type. ReifyFnPointer, /// Go from a safe fn pointer to an unsafe fn pointer. UnsafeFnPointer, /// Go from a non-capturing closure to an fn pointer or an unsafe fn pointer. /// It cannot convert a closure that requires unsafe. ClosureFnPointer(Safety), /// Go from a mut raw pointer to a const raw pointer. MutToConstPointer, #[allow(dead_code)] /// Go from `*const [T; N]` to `*const T` ArrayToPointer, /// Unsize a pointer/reference value, e.g., `&[T; n]` to /// `&[T]`. Note that the source could be a thin or fat pointer. /// This will do things like convert thin pointers to fat /// pointers, or convert structs containing thin pointers to /// structs containing fat pointers, or convert between fat /// pointers. We don't store the details of how the transform is /// done (in fact, we don't know that, because it might depend on /// the precise type parameters). We just store the target /// type. Codegen backends and miri figure out what has to be done /// based on the precise source/target type at hand. Unsize, } /// The result of type inference: A mapping from expressions and patterns to types. /// /// When you add a field that stores types (including `Substitution` and the like), don't forget /// `resolve_completely()`'ing them in `InferenceContext::resolve_all()`. Inference variables must /// not appear in the final inference result. #[derive(Clone, PartialEq, Eq, Debug, Default)] pub struct InferenceResult { /// For each method call expr, records the function it resolves to. method_resolutions: FxHashMap, /// For each field access expr, records the field it resolves to. field_resolutions: FxHashMap>, /// For each struct literal or pattern, records the variant it resolves to. variant_resolutions: FxHashMap, /// For each associated item record what it resolves to assoc_resolutions: FxHashMap, /// Whenever a tuple field expression access a tuple field, we allocate a tuple id in /// [`InferenceContext`] and store the tuples substitution there. This map is the reverse of /// that which allows us to resolve a [`TupleFieldId`]s type. pub tuple_field_access_types: FxHashMap, pub diagnostics: Vec, pub type_of_expr: ArenaMap, /// For each pattern record the type it resolves to. /// /// **Note**: When a pattern type is resolved it may still contain /// unresolved or missing subpatterns or subpatterns of mismatched types. pub type_of_pat: ArenaMap, pub type_of_binding: ArenaMap, pub type_of_rpit: ArenaMap, /// Type of the result of `.into_iter()` on the for. `ExprId` is the one of the whole for loop. pub type_of_for_iterator: FxHashMap, type_mismatches: FxHashMap, /// Interned common types to return references to. standard_types: InternedStandardTypes, /// Stores the types which were implicitly dereferenced in pattern binding modes. pub pat_adjustments: FxHashMap>, /// Stores the binding mode (`ref` in `let ref x = 2`) of bindings. /// /// This one is tied to the `PatId` instead of `BindingId`, because in some rare cases, a binding in an /// or pattern can have multiple binding modes. For example: /// ``` /// fn foo(mut slice: &[u32]) -> usize { /// slice = match slice { /// [0, rest @ ..] | rest => rest, /// }; /// } /// ``` /// the first `rest` has implicit `ref` binding mode, but the second `rest` binding mode is `move`. pub binding_modes: ArenaMap, pub expr_adjustments: FxHashMap>, pub(crate) closure_info: FxHashMap, FnTrait)>, // FIXME: remove this field pub mutated_bindings_in_closure: FxHashSet, } impl InferenceResult { pub fn method_resolution(&self, expr: ExprId) -> Option<(FunctionId, Substitution)> { self.method_resolutions.get(&expr).cloned() } pub fn field_resolution(&self, expr: ExprId) -> Option> { self.field_resolutions.get(&expr).copied() } pub fn variant_resolution_for_expr(&self, id: ExprId) -> Option { self.variant_resolutions.get(&id.into()).copied() } pub fn variant_resolution_for_pat(&self, id: PatId) -> Option { self.variant_resolutions.get(&id.into()).copied() } pub fn assoc_resolutions_for_expr(&self, id: ExprId) -> Option<(AssocItemId, Substitution)> { self.assoc_resolutions.get(&id.into()).cloned() } pub fn assoc_resolutions_for_pat(&self, id: PatId) -> Option<(AssocItemId, Substitution)> { self.assoc_resolutions.get(&id.into()).cloned() } pub fn type_mismatch_for_expr(&self, expr: ExprId) -> Option<&TypeMismatch> { self.type_mismatches.get(&expr.into()) } pub fn type_mismatch_for_pat(&self, pat: PatId) -> Option<&TypeMismatch> { self.type_mismatches.get(&pat.into()) } pub fn type_mismatches(&self) -> impl Iterator { self.type_mismatches.iter().map(|(expr_or_pat, mismatch)| (*expr_or_pat, mismatch)) } pub fn expr_type_mismatches(&self) -> impl Iterator { self.type_mismatches.iter().filter_map(|(expr_or_pat, mismatch)| match *expr_or_pat { ExprOrPatId::ExprId(expr) => Some((expr, mismatch)), _ => None, }) } pub fn closure_info(&self, closure: &ClosureId) -> &(Vec, FnTrait) { self.closure_info.get(closure).unwrap() } } impl Index for InferenceResult { type Output = Ty; fn index(&self, expr: ExprId) -> &Ty { self.type_of_expr.get(expr).unwrap_or(&self.standard_types.unknown) } } impl Index for InferenceResult { type Output = Ty; fn index(&self, pat: PatId) -> &Ty { self.type_of_pat.get(pat).unwrap_or(&self.standard_types.unknown) } } impl Index for InferenceResult { type Output = Ty; fn index(&self, b: BindingId) -> &Ty { self.type_of_binding.get(b).unwrap_or(&self.standard_types.unknown) } } /// The inference context contains all information needed during type inference. #[derive(Clone, Debug)] pub(crate) struct InferenceContext<'a> { pub(crate) db: &'a dyn HirDatabase, pub(crate) owner: DefWithBodyId, pub(crate) body: &'a Body, pub(crate) resolver: Resolver, table: unify::InferenceTable<'a>, /// The traits in scope, disregarding block modules. This is used for caching purposes. traits_in_scope: FxHashSet, pub(crate) result: InferenceResult, tuple_field_accesses_rev: IndexSet>, /// The return type of the function being inferred, the closure or async block if we're /// currently within one. /// /// We might consider using a nested inference context for checking /// closures so we can swap all shared things out at once. return_ty: Ty, /// If `Some`, this stores coercion information for returned /// expressions. If `None`, this is in a context where return is /// inappropriate, such as a const expression. return_coercion: Option, /// The resume type and the yield type, respectively, of the coroutine being inferred. resume_yield_tys: Option<(Ty, Ty)>, diverges: Diverges, breakables: Vec, deferred_cast_checks: Vec, // fields related to closure capture current_captures: Vec, current_closure: Option, /// Stores the list of closure ids that need to be analyzed before this closure. See the /// comment on `InferenceContext::sort_closures` closure_dependencies: FxHashMap>, deferred_closures: FxHashMap, ExprId)>>, } #[derive(Clone, Debug)] struct BreakableContext { /// Whether this context contains at least one break expression. may_break: bool, /// The coercion target of the context. coerce: Option, /// The optional label of the context. label: Option, kind: BreakableKind, } #[derive(Clone, Debug)] enum BreakableKind { Block, Loop, /// A border is something like an async block, closure etc. Anything that prevents /// breaking/continuing through Border, } fn find_breakable( ctxs: &mut [BreakableContext], label: Option, ) -> Option<&mut BreakableContext> { let mut ctxs = ctxs .iter_mut() .rev() .take_while(|it| matches!(it.kind, BreakableKind::Block | BreakableKind::Loop)); match label { Some(_) => ctxs.find(|ctx| ctx.label == label), None => ctxs.find(|ctx| matches!(ctx.kind, BreakableKind::Loop)), } } fn find_continuable( ctxs: &mut [BreakableContext], label: Option, ) -> Option<&mut BreakableContext> { match label { Some(_) => find_breakable(ctxs, label).filter(|it| matches!(it.kind, BreakableKind::Loop)), None => find_breakable(ctxs, label), } } impl<'a> InferenceContext<'a> { fn new( db: &'a dyn HirDatabase, owner: DefWithBodyId, body: &'a Body, resolver: Resolver, ) -> Self { let trait_env = db.trait_environment_for_body(owner); InferenceContext { result: InferenceResult::default(), table: unify::InferenceTable::new(db, trait_env), tuple_field_accesses_rev: Default::default(), return_ty: TyKind::Error.intern(Interner), // set in collect_* calls resume_yield_tys: None, return_coercion: None, db, owner, body, traits_in_scope: resolver.traits_in_scope(db.upcast()), resolver, diverges: Diverges::Maybe, breakables: Vec::new(), deferred_cast_checks: Vec::new(), current_captures: Vec::new(), current_closure: None, deferred_closures: FxHashMap::default(), closure_dependencies: FxHashMap::default(), } } // FIXME: This function should be private in module. It is currently only used in the consteval, since we need // `InferenceResult` in the middle of inference. See the fixme comment in `consteval::eval_to_const`. If you // used this function for another workaround, mention it here. If you really need this function and believe that // there is no problem in it being `pub(crate)`, remove this comment. pub(crate) fn resolve_all(self) -> InferenceResult { let InferenceContext { mut table, mut result, deferred_cast_checks, tuple_field_accesses_rev, .. } = self; // Destructure every single field so whenever new fields are added to `InferenceResult` we // don't forget to handle them here. let InferenceResult { method_resolutions, field_resolutions: _, variant_resolutions: _, assoc_resolutions, diagnostics, type_of_expr, type_of_pat, type_of_binding, type_of_rpit, type_of_for_iterator, type_mismatches, standard_types: _, pat_adjustments, binding_modes: _, expr_adjustments, // Types in `closure_info` have already been `resolve_completely()`'d during // `InferenceContext::infer_closures()` (in `HirPlace::ty()` specifically), so no need // to resolve them here. closure_info: _, mutated_bindings_in_closure: _, tuple_field_access_types: _, } = &mut result; table.fallback_if_possible(); // Comment from rustc: // Even though coercion casts provide type hints, we check casts after fallback for // backwards compatibility. This makes fallback a stronger type hint than a cast coercion. for cast in deferred_cast_checks { cast.check(&mut table); } // FIXME resolve obligations as well (use Guidance if necessary) table.resolve_obligations_as_possible(); // make sure diverging type variables are marked as such table.propagate_diverging_flag(); for ty in type_of_expr.values_mut() { *ty = table.resolve_completely(ty.clone()); } for ty in type_of_pat.values_mut() { *ty = table.resolve_completely(ty.clone()); } for ty in type_of_binding.values_mut() { *ty = table.resolve_completely(ty.clone()); } for ty in type_of_rpit.values_mut() { *ty = table.resolve_completely(ty.clone()); } for ty in type_of_for_iterator.values_mut() { *ty = table.resolve_completely(ty.clone()); } for mismatch in type_mismatches.values_mut() { mismatch.expected = table.resolve_completely(mismatch.expected.clone()); mismatch.actual = table.resolve_completely(mismatch.actual.clone()); } diagnostics.retain_mut(|diagnostic| { use InferenceDiagnostic::*; match diagnostic { ExpectedFunction { found: ty, .. } | UnresolvedField { receiver: ty, .. } | UnresolvedMethodCall { receiver: ty, .. } => { *ty = table.resolve_completely(ty.clone()); // FIXME: Remove this when we are on par with rustc in terms of inference if ty.contains_unknown() { return false; } if let UnresolvedMethodCall { field_with_same_name, .. } = diagnostic { if let Some(ty) = field_with_same_name { *ty = table.resolve_completely(ty.clone()); if ty.contains_unknown() { *field_with_same_name = None; } } } } TypedHole { expected: ty, .. } => { *ty = table.resolve_completely(ty.clone()); } _ => (), } true }); for (_, subst) in method_resolutions.values_mut() { *subst = table.resolve_completely(subst.clone()); } for (_, subst) in assoc_resolutions.values_mut() { *subst = table.resolve_completely(subst.clone()); } for adjustment in expr_adjustments.values_mut().flatten() { adjustment.target = table.resolve_completely(adjustment.target.clone()); } for adjustment in pat_adjustments.values_mut().flatten() { *adjustment = table.resolve_completely(adjustment.clone()); } result.tuple_field_access_types = tuple_field_accesses_rev .into_iter() .enumerate() .map(|(idx, subst)| (TupleId(idx as u32), table.resolve_completely(subst))) .collect(); result } fn collect_const(&mut self, data: &ConstData) { self.return_ty = self.make_ty(&data.type_ref); } fn collect_static(&mut self, data: &StaticData) { self.return_ty = self.make_ty(&data.type_ref); } fn collect_fn(&mut self, func: FunctionId) { let data = self.db.function_data(func); let ctx = crate::lower::TyLoweringContext::new(self.db, &self.resolver, func.into()) .with_impl_trait_mode(ImplTraitLoweringMode::Param); let mut param_tys = data.params.iter().map(|type_ref| ctx.lower_ty(type_ref)).collect::>(); // Check if function contains a va_list, if it does then we append it to the parameter types // that are collected from the function data if data.is_varargs() { let va_list_ty = match self.resolve_va_list() { Some(va_list) => TyBuilder::adt(self.db, va_list) .fill_with_defaults(self.db, || self.table.new_type_var()) .build(), None => self.err_ty(), }; param_tys.push(va_list_ty) } for (ty, pat) in param_tys.into_iter().zip(self.body.params.iter()) { let ty = self.insert_type_vars(ty); let ty = self.normalize_associated_types_in(ty); self.infer_top_pat(*pat, &ty); } let return_ty = &*data.ret_type; let ctx = crate::lower::TyLoweringContext::new(self.db, &self.resolver, self.owner.into()) .with_impl_trait_mode(ImplTraitLoweringMode::Opaque); let return_ty = ctx.lower_ty(return_ty); let return_ty = self.insert_type_vars(return_ty); let return_ty = if let Some(rpits) = self.db.return_type_impl_traits(func) { // RPIT opaque types use substitution of their parent function. let fn_placeholders = TyBuilder::placeholder_subst(self.db, func); let result = self.insert_inference_vars_for_rpit(return_ty, rpits.clone(), fn_placeholders); let rpits = rpits.skip_binders(); for (id, _) in rpits.impl_traits.iter() { if let Entry::Vacant(e) = self.result.type_of_rpit.entry(id) { never!("Missed RPIT in `insert_inference_vars_for_rpit`"); e.insert(TyKind::Error.intern(Interner)); } } result } else { return_ty }; self.return_ty = self.normalize_associated_types_in(return_ty); self.return_coercion = Some(CoerceMany::new(self.return_ty.clone())); } fn insert_inference_vars_for_rpit( &mut self, t: T, rpits: Arc>, fn_placeholders: Substitution, ) -> T where T: crate::HasInterner + crate::TypeFoldable, { fold_tys( t, |ty, _| { let opaque_ty_id = match ty.kind(Interner) { TyKind::OpaqueType(opaque_ty_id, _) => *opaque_ty_id, _ => return ty, }; let idx = match self.db.lookup_intern_impl_trait_id(opaque_ty_id.into()) { ImplTraitId::ReturnTypeImplTrait(_, idx) => idx, _ => unreachable!(), }; let bounds = (*rpits).map_ref(|rpits| rpits.impl_traits[idx].bounds.map_ref(|it| it.iter())); let var = self.table.new_type_var(); let var_subst = Substitution::from1(Interner, var.clone()); for bound in bounds { let predicate = bound.map(|it| it.cloned()).substitute(Interner, &fn_placeholders); let (var_predicate, binders) = predicate.substitute(Interner, &var_subst).into_value_and_skipped_binders(); always!(binders.is_empty(Interner)); // quantified where clauses not yet handled let var_predicate = self.insert_inference_vars_for_rpit( var_predicate, rpits.clone(), fn_placeholders.clone(), ); self.push_obligation(var_predicate.cast(Interner)); } self.result.type_of_rpit.insert(idx, var.clone()); var }, DebruijnIndex::INNERMOST, ) } fn infer_body(&mut self) { match self.return_coercion { Some(_) => self.infer_return(self.body.body_expr), None => { _ = self.infer_expr_coerce( self.body.body_expr, &Expectation::has_type(self.return_ty.clone()), ) } } } fn write_expr_ty(&mut self, expr: ExprId, ty: Ty) { self.result.type_of_expr.insert(expr, ty); } fn write_expr_adj(&mut self, expr: ExprId, adjustments: Vec) { self.result.expr_adjustments.insert(expr, adjustments); } fn write_method_resolution(&mut self, expr: ExprId, func: FunctionId, subst: Substitution) { self.result.method_resolutions.insert(expr, (func, subst)); } fn write_variant_resolution(&mut self, id: ExprOrPatId, variant: VariantId) { self.result.variant_resolutions.insert(id, variant); } fn write_assoc_resolution(&mut self, id: ExprOrPatId, item: AssocItemId, subs: Substitution) { self.result.assoc_resolutions.insert(id, (item, subs)); } fn write_pat_ty(&mut self, pat: PatId, ty: Ty) { self.result.type_of_pat.insert(pat, ty); } fn write_binding_ty(&mut self, id: BindingId, ty: Ty) { self.result.type_of_binding.insert(id, ty); } fn push_diagnostic(&mut self, diagnostic: InferenceDiagnostic) { self.result.diagnostics.push(diagnostic); } fn make_ty(&mut self, type_ref: &TypeRef) -> Ty { let ctx = crate::lower::TyLoweringContext::new(self.db, &self.resolver, self.owner.into()); let ty = ctx.lower_ty(type_ref); let ty = self.insert_type_vars(ty); self.normalize_associated_types_in(ty) } fn err_ty(&self) -> Ty { self.result.standard_types.unknown.clone() } /// Replaces `Ty::Error` by a new type var, so we can maybe still infer it. fn insert_type_vars_shallow(&mut self, ty: Ty) -> Ty { self.table.insert_type_vars_shallow(ty) } fn insert_type_vars(&mut self, ty: T) -> T where T: HasInterner + TypeFoldable, { self.table.insert_type_vars(ty) } fn push_obligation(&mut self, o: DomainGoal) { self.table.register_obligation(o.cast(Interner)); } fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool { let ty1 = ty1 .clone() .try_fold_with( &mut UnevaluatedConstEvaluatorFolder { db: self.db }, DebruijnIndex::INNERMOST, ) .unwrap(); let ty2 = ty2 .clone() .try_fold_with( &mut UnevaluatedConstEvaluatorFolder { db: self.db }, DebruijnIndex::INNERMOST, ) .unwrap(); self.table.unify(&ty1, &ty2) } /// Attempts to returns the deeply last field of nested structures, but /// does not apply any normalization in its search. Returns the same type /// if input `ty` is not a structure at all. fn struct_tail_without_normalization(&mut self, ty: Ty) -> Ty { self.struct_tail_with_normalize(ty, identity) } /// Returns the deeply last field of nested structures, or the same type if /// not a structure at all. Corresponds to the only possible unsized field, /// and its type can be used to determine unsizing strategy. /// /// This is parameterized over the normalization strategy (i.e. how to /// handle `::Assoc` and `impl Trait`); pass the identity /// function to indicate no normalization should take place. fn struct_tail_with_normalize( &mut self, mut ty: Ty, mut normalize: impl FnMut(Ty) -> Ty, ) -> Ty { // FIXME: fetch the limit properly let recursion_limit = 10; for iteration in 0.. { if iteration > recursion_limit { return self.err_ty(); } match ty.kind(Interner) { TyKind::Adt(chalk_ir::AdtId(hir_def::AdtId::StructId(struct_id)), substs) => { match self.db.field_types((*struct_id).into()).values().next_back().cloned() { Some(field) => { ty = field.substitute(Interner, substs); } None => break, } } TyKind::Adt(..) => break, TyKind::Tuple(_, substs) => { match substs .as_slice(Interner) .split_last() .and_then(|(last_ty, _)| last_ty.ty(Interner)) { Some(last_ty) => ty = last_ty.clone(), None => break, } } TyKind::Alias(..) => { let normalized = normalize(ty.clone()); if ty == normalized { return ty; } else { ty = normalized; } } _ => break, } } ty } /// Recurses through the given type, normalizing associated types mentioned /// in it by replacing them by type variables and registering obligations to /// resolve later. This should be done once for every type we get from some /// type annotation (e.g. from a let type annotation, field type or function /// call). `make_ty` handles this already, but e.g. for field types we need /// to do it as well. fn normalize_associated_types_in(&mut self, ty: T) -> T where T: HasInterner + TypeFoldable, { self.table.normalize_associated_types_in(ty) } fn resolve_ty_shallow(&mut self, ty: &Ty) -> Ty { self.table.resolve_ty_shallow(ty) } fn resolve_associated_type(&mut self, inner_ty: Ty, assoc_ty: Option) -> Ty { self.resolve_associated_type_with_params(inner_ty, assoc_ty, &[]) } fn resolve_associated_type_with_params( &mut self, inner_ty: Ty, assoc_ty: Option, // FIXME(GATs): these are args for the trait ref, args for assoc type itself should be // handled when we support them. params: &[GenericArg], ) -> Ty { match assoc_ty { Some(res_assoc_ty) => { let trait_ = match res_assoc_ty.lookup(self.db.upcast()).container { hir_def::ItemContainerId::TraitId(trait_) => trait_, _ => panic!("resolve_associated_type called with non-associated type"), }; let ty = self.table.new_type_var(); let mut param_iter = params.iter().cloned(); let trait_ref = TyBuilder::trait_ref(self.db, trait_) .push(inner_ty) .fill(|_| param_iter.next().unwrap()) .build(); let alias_eq = AliasEq { alias: AliasTy::Projection(ProjectionTy { associated_ty_id: to_assoc_type_id(res_assoc_ty), substitution: trait_ref.substitution.clone(), }), ty: ty.clone(), }; self.push_obligation(trait_ref.cast(Interner)); self.push_obligation(alias_eq.cast(Interner)); ty } None => self.err_ty(), } } fn resolve_variant(&mut self, path: Option<&Path>, value_ns: bool) -> (Ty, Option) { let path = match path { Some(path) => path, None => return (self.err_ty(), None), }; let ctx = crate::lower::TyLoweringContext::new(self.db, &self.resolver, self.owner.into()); let (resolution, unresolved) = if value_ns { match self.resolver.resolve_path_in_value_ns(self.db.upcast(), path) { Some(ResolveValueResult::ValueNs(value, _)) => match value { ValueNs::EnumVariantId(var) => { let substs = ctx.substs_from_path(path, var.into(), true); let ty = self.db.ty(var.lookup(self.db.upcast()).parent.into()); let ty = self.insert_type_vars(ty.substitute(Interner, &substs)); return (ty, Some(var.into())); } ValueNs::StructId(strukt) => { let substs = ctx.substs_from_path(path, strukt.into(), true); let ty = self.db.ty(strukt.into()); let ty = self.insert_type_vars(ty.substitute(Interner, &substs)); return (ty, Some(strukt.into())); } ValueNs::ImplSelf(impl_id) => (TypeNs::SelfType(impl_id), None), _ => return (self.err_ty(), None), }, Some(ResolveValueResult::Partial(typens, unresolved, _)) => { (typens, Some(unresolved)) } None => return (self.err_ty(), None), } } else { match self.resolver.resolve_path_in_type_ns(self.db.upcast(), path) { Some((it, idx, _)) => (it, idx), None => return (self.err_ty(), None), } }; let Some(mod_path) = path.mod_path() else { never!("resolver should always resolve lang item paths"); return (self.err_ty(), None); }; return match resolution { TypeNs::AdtId(AdtId::StructId(strukt)) => { let substs = ctx.substs_from_path(path, strukt.into(), true); let ty = self.db.ty(strukt.into()); let ty = self.insert_type_vars(ty.substitute(Interner, &substs)); forbid_unresolved_segments((ty, Some(strukt.into())), unresolved) } TypeNs::AdtId(AdtId::UnionId(u)) => { let substs = ctx.substs_from_path(path, u.into(), true); let ty = self.db.ty(u.into()); let ty = self.insert_type_vars(ty.substitute(Interner, &substs)); forbid_unresolved_segments((ty, Some(u.into())), unresolved) } TypeNs::EnumVariantId(var) => { let substs = ctx.substs_from_path(path, var.into(), true); let ty = self.db.ty(var.lookup(self.db.upcast()).parent.into()); let ty = self.insert_type_vars(ty.substitute(Interner, &substs)); forbid_unresolved_segments((ty, Some(var.into())), unresolved) } TypeNs::SelfType(impl_id) => { let generics = crate::utils::generics(self.db.upcast(), impl_id.into()); let substs = generics.placeholder_subst(self.db); let mut ty = self.db.impl_self_ty(impl_id).substitute(Interner, &substs); let Some(mut remaining_idx) = unresolved else { return self.resolve_variant_on_alias(ty, None, mod_path); }; let mut remaining_segments = path.segments().skip(remaining_idx); // We need to try resolving unresolved segments one by one because each may resolve // to a projection, which `TyLoweringContext` cannot handle on its own. while !remaining_segments.is_empty() { let resolved_segment = path.segments().get(remaining_idx - 1).unwrap(); let current_segment = remaining_segments.take(1); // If we can resolve to an enum variant, it takes priority over associated type // of the same name. if let Some((AdtId::EnumId(id), _)) = ty.as_adt() { let enum_data = self.db.enum_data(id); let name = current_segment.first().unwrap().name; if let Some(variant) = enum_data.variant(name) { return if remaining_segments.len() == 1 { (ty, Some(variant.into())) } else { // We still have unresolved paths, but enum variants never have // associated types! (self.err_ty(), None) }; } } // `lower_partly_resolved_path()` returns `None` as type namespace unless // `remaining_segments` is empty, which is never the case here. We don't know // which namespace the new `ty` is in until normalized anyway. (ty, _) = ctx.lower_partly_resolved_path( resolution, resolved_segment, current_segment, false, ); ty = self.table.insert_type_vars(ty); ty = self.table.normalize_associated_types_in(ty); ty = self.table.resolve_ty_shallow(&ty); if ty.is_unknown() { return (self.err_ty(), None); } // FIXME(inherent_associated_types): update `resolution` based on `ty` here. remaining_idx += 1; remaining_segments = remaining_segments.skip(1); } let variant = ty.as_adt().and_then(|(id, _)| match id { AdtId::StructId(s) => Some(VariantId::StructId(s)), AdtId::UnionId(u) => Some(VariantId::UnionId(u)), AdtId::EnumId(_) => { // FIXME Error E0071, expected struct, variant or union type, found enum `Foo` None } }); (ty, variant) } TypeNs::TypeAliasId(it) => { let resolved_seg = match unresolved { None => path.segments().last().unwrap(), Some(n) => path.segments().get(path.segments().len() - n - 1).unwrap(), }; let substs = ctx.substs_from_path_segment(resolved_seg, Some(it.into()), true, None); let ty = self.db.ty(it.into()); let ty = self.insert_type_vars(ty.substitute(Interner, &substs)); self.resolve_variant_on_alias(ty, unresolved, mod_path) } TypeNs::AdtSelfType(_) => { // FIXME this could happen in array size expressions, once we're checking them (self.err_ty(), None) } TypeNs::GenericParam(_) => { // FIXME potentially resolve assoc type (self.err_ty(), None) } TypeNs::AdtId(AdtId::EnumId(_)) | TypeNs::BuiltinType(_) | TypeNs::TraitId(_) | TypeNs::TraitAliasId(_) => { // FIXME diagnostic (self.err_ty(), None) } }; fn forbid_unresolved_segments( result: (Ty, Option), unresolved: Option, ) -> (Ty, Option) { if unresolved.is_none() { result } else { // FIXME diagnostic (TyKind::Error.intern(Interner), None) } } } fn resolve_variant_on_alias( &mut self, ty: Ty, unresolved: Option, path: &ModPath, ) -> (Ty, Option) { let remaining = unresolved.map(|it| path.segments()[it..].len()).filter(|it| it > &0); let ty = match ty.kind(Interner) { TyKind::Alias(AliasTy::Projection(proj_ty)) => { self.db.normalize_projection(proj_ty.clone(), self.table.trait_env.clone()) } _ => ty, }; match remaining { None => { let variant = ty.as_adt().and_then(|(adt_id, _)| match adt_id { AdtId::StructId(s) => Some(VariantId::StructId(s)), AdtId::UnionId(u) => Some(VariantId::UnionId(u)), AdtId::EnumId(_) => { // FIXME Error E0071, expected struct, variant or union type, found enum `Foo` None } }); (ty, variant) } Some(1) => { let segment = path.segments().last().unwrap(); // this could be an enum variant or associated type if let Some((AdtId::EnumId(enum_id), _)) = ty.as_adt() { let enum_data = self.db.enum_data(enum_id); if let Some(variant) = enum_data.variant(segment) { return (ty, Some(variant.into())); } } // FIXME potentially resolve assoc type (self.err_ty(), None) } Some(_) => { // FIXME diagnostic (self.err_ty(), None) } } } fn resolve_lang_item(&self, item: LangItem) -> Option { let krate = self.resolver.krate(); self.db.lang_item(krate, item) } fn resolve_output_on(&self, trait_: TraitId) -> Option { self.db.trait_data(trait_).associated_type_by_name(&name![Output]) } fn resolve_lang_trait(&self, lang: LangItem) -> Option { self.resolve_lang_item(lang)?.as_trait() } fn resolve_ops_neg_output(&self) -> Option { self.resolve_output_on(self.resolve_lang_trait(LangItem::Neg)?) } fn resolve_ops_not_output(&self) -> Option { self.resolve_output_on(self.resolve_lang_trait(LangItem::Not)?) } fn resolve_future_future_output(&self) -> Option { let ItemContainerId::TraitId(trait_) = self .resolve_lang_item(LangItem::IntoFutureIntoFuture)? .as_function()? .lookup(self.db.upcast()) .container else { return None; }; self.resolve_output_on(trait_) } fn resolve_boxed_box(&self) -> Option { let struct_ = self.resolve_lang_item(LangItem::OwnedBox)?.as_struct()?; Some(struct_.into()) } fn resolve_range_full(&self) -> Option { let struct_ = self.resolve_lang_item(LangItem::RangeFull)?.as_struct()?; Some(struct_.into()) } fn resolve_range(&self) -> Option { let struct_ = self.resolve_lang_item(LangItem::Range)?.as_struct()?; Some(struct_.into()) } fn resolve_range_inclusive(&self) -> Option { let struct_ = self.resolve_lang_item(LangItem::RangeInclusiveStruct)?.as_struct()?; Some(struct_.into()) } fn resolve_range_from(&self) -> Option { let struct_ = self.resolve_lang_item(LangItem::RangeFrom)?.as_struct()?; Some(struct_.into()) } fn resolve_range_to(&self) -> Option { let struct_ = self.resolve_lang_item(LangItem::RangeTo)?.as_struct()?; Some(struct_.into()) } fn resolve_range_to_inclusive(&self) -> Option { let struct_ = self.resolve_lang_item(LangItem::RangeToInclusive)?.as_struct()?; Some(struct_.into()) } fn resolve_ops_index_output(&self) -> Option { self.resolve_output_on(self.resolve_lang_trait(LangItem::Index)?) } fn resolve_va_list(&self) -> Option { let struct_ = self.resolve_lang_item(LangItem::VaList)?.as_struct()?; Some(struct_.into()) } fn get_traits_in_scope(&self) -> Either, &FxHashSet> { let mut b_traits = self.resolver.traits_in_scope_from_block_scopes().peekable(); if b_traits.peek().is_some() { Either::Left(self.traits_in_scope.iter().copied().chain(b_traits).collect()) } else { Either::Right(&self.traits_in_scope) } } } /// When inferring an expression, we propagate downward whatever type hint we /// are able in the form of an `Expectation`. #[derive(Clone, PartialEq, Eq, Debug)] pub(crate) enum Expectation { None, HasType(Ty), #[allow(dead_code)] Castable(Ty), RValueLikeUnsized(Ty), } impl Expectation { /// The expectation that the type of the expression needs to equal the given /// type. fn has_type(ty: Ty) -> Self { if ty.is_unknown() { // FIXME: get rid of this? Expectation::None } else { Expectation::HasType(ty) } } /// The following explanation is copied straight from rustc: /// Provides an expectation for an rvalue expression given an *optional* /// hint, which is not required for type safety (the resulting type might /// be checked higher up, as is the case with `&expr` and `box expr`), but /// is useful in determining the concrete type. /// /// The primary use case is where the expected type is a fat pointer, /// like `&[isize]`. For example, consider the following statement: /// /// let it: &[isize] = &[1, 2, 3]; /// /// In this case, the expected type for the `&[1, 2, 3]` expression is /// `&[isize]`. If however we were to say that `[1, 2, 3]` has the /// expectation `ExpectHasType([isize])`, that would be too strong -- /// `[1, 2, 3]` does not have the type `[isize]` but rather `[isize; 3]`. /// It is only the `&[1, 2, 3]` expression as a whole that can be coerced /// to the type `&[isize]`. Therefore, we propagate this more limited hint, /// which still is useful, because it informs integer literals and the like. /// See the test case `test/ui/coerce-expect-unsized.rs` and #20169 /// for examples of where this comes up,. fn rvalue_hint(ctx: &mut InferenceContext<'_>, ty: Ty) -> Self { match ctx.struct_tail_without_normalization(ty.clone()).kind(Interner) { TyKind::Slice(_) | TyKind::Str | TyKind::Dyn(_) => Expectation::RValueLikeUnsized(ty), _ => Expectation::has_type(ty), } } /// This expresses no expectation on the type. fn none() -> Self { Expectation::None } fn resolve(&self, table: &mut unify::InferenceTable<'_>) -> Expectation { match self { Expectation::None => Expectation::None, Expectation::HasType(t) => Expectation::HasType(table.resolve_ty_shallow(t)), Expectation::Castable(t) => Expectation::Castable(table.resolve_ty_shallow(t)), Expectation::RValueLikeUnsized(t) => { Expectation::RValueLikeUnsized(table.resolve_ty_shallow(t)) } } } fn to_option(&self, table: &mut unify::InferenceTable<'_>) -> Option { match self.resolve(table) { Expectation::None => None, Expectation::HasType(t) | Expectation::Castable(t) | Expectation::RValueLikeUnsized(t) => Some(t), } } fn only_has_type(&self, table: &mut unify::InferenceTable<'_>) -> Option { match self { Expectation::HasType(t) => Some(table.resolve_ty_shallow(t)), Expectation::Castable(_) | Expectation::RValueLikeUnsized(_) | Expectation::None => { None } } } fn coercion_target_type(&self, table: &mut unify::InferenceTable<'_>) -> Ty { self.only_has_type(table).unwrap_or_else(|| table.new_type_var()) } /// Comment copied from rustc: /// Disregard "castable to" expectations because they /// can lead us astray. Consider for example `if cond /// {22} else {c} as u8` -- if we propagate the /// "castable to u8" constraint to 22, it will pick the /// type 22u8, which is overly constrained (c might not /// be a u8). In effect, the problem is that the /// "castable to" expectation is not the tightest thing /// we can say, so we want to drop it in this case. /// The tightest thing we can say is "must unify with /// else branch". Note that in the case of a "has type" /// constraint, this limitation does not hold. /// /// If the expected type is just a type variable, then don't use /// an expected type. Otherwise, we might write parts of the type /// when checking the 'then' block which are incompatible with the /// 'else' branch. fn adjust_for_branches(&self, table: &mut unify::InferenceTable<'_>) -> Expectation { match self { Expectation::HasType(ety) => { let ety = table.resolve_ty_shallow(ety); if ety.is_ty_var() { Expectation::None } else { Expectation::HasType(ety) } } Expectation::RValueLikeUnsized(ety) => Expectation::RValueLikeUnsized(ety.clone()), _ => Expectation::None, } } } #[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord)] enum Diverges { Maybe, Always, } impl Diverges { fn is_always(self) -> bool { self == Diverges::Always } } impl std::ops::BitAnd for Diverges { type Output = Self; fn bitand(self, other: Self) -> Self { std::cmp::min(self, other) } } impl std::ops::BitOr for Diverges { type Output = Self; fn bitor(self, other: Self) -> Self { std::cmp::max(self, other) } } impl std::ops::BitAndAssign for Diverges { fn bitand_assign(&mut self, other: Self) { *self = *self & other; } } impl std::ops::BitOrAssign for Diverges { fn bitor_assign(&mut self, other: Self) { *self = *self | other; } }