use crate::traits::query::outlives_bounds::InferCtxtExt as _; use crate::traits::{self, TraitEngine, TraitEngineExt}; use rustc_hir as hir; use rustc_hir::lang_items::LangItem; use rustc_infer::infer::outlives::env::OutlivesEnvironment; use rustc_infer::traits::ObligationCause; use rustc_middle::arena::ArenaAllocatable; use rustc_middle::infer::canonical::{Canonical, CanonicalizedQueryResponse, QueryResponse}; use rustc_middle::traits::query::Fallible; use rustc_middle::ty::{self, Ty, TypeFoldable}; use rustc_span::{Span, DUMMY_SP}; use std::fmt::Debug; pub use rustc_infer::infer::*; pub trait InferCtxtExt<'tcx> { fn type_is_copy_modulo_regions( &self, param_env: ty::ParamEnv<'tcx>, ty: Ty<'tcx>, span: Span, ) -> bool; fn partially_normalize_associated_types_in( &self, span: Span, body_id: hir::HirId, param_env: ty::ParamEnv<'tcx>, value: &T, ) -> InferOk<'tcx, T> where T: TypeFoldable<'tcx>; } impl<'cx, 'tcx> InferCtxtExt<'tcx> for InferCtxt<'cx, 'tcx> { fn type_is_copy_modulo_regions( &self, param_env: ty::ParamEnv<'tcx>, ty: Ty<'tcx>, span: Span, ) -> bool { let ty = self.resolve_vars_if_possible(&ty); if !(param_env, ty).needs_infer() { return ty.is_copy_modulo_regions(self.tcx.at(span), param_env); } let copy_def_id = self.tcx.require_lang_item(LangItem::Copy, None); // This can get called from typeck (by euv), and `moves_by_default` // rightly refuses to work with inference variables, but // moves_by_default has a cache, which we want to use in other // cases. traits::type_known_to_meet_bound_modulo_regions(self, param_env, ty, copy_def_id, span) } /// Normalizes associated types in `value`, potentially returning /// new obligations that must further be processed. fn partially_normalize_associated_types_in( &self, span: Span, body_id: hir::HirId, param_env: ty::ParamEnv<'tcx>, value: &T, ) -> InferOk<'tcx, T> where T: TypeFoldable<'tcx>, { debug!("partially_normalize_associated_types_in(value={:?})", value); let mut selcx = traits::SelectionContext::new(self); let cause = ObligationCause::misc(span, body_id); let traits::Normalized { value, obligations } = traits::normalize(&mut selcx, param_env, cause, value); debug!( "partially_normalize_associated_types_in: result={:?} predicates={:?}", value, obligations ); InferOk { value, obligations } } } pub trait InferCtxtBuilderExt<'tcx> { fn enter_canonical_trait_query( &mut self, canonical_key: &Canonical<'tcx, K>, operation: impl FnOnce(&InferCtxt<'_, 'tcx>, &mut dyn TraitEngine<'tcx>, K) -> Fallible, ) -> Fallible> where K: TypeFoldable<'tcx>, R: Debug + TypeFoldable<'tcx>, Canonical<'tcx, QueryResponse<'tcx, R>>: ArenaAllocatable<'tcx>; } impl<'tcx> InferCtxtBuilderExt<'tcx> for InferCtxtBuilder<'tcx> { /// The "main method" for a canonicalized trait query. Given the /// canonical key `canonical_key`, this method will create a new /// inference context, instantiate the key, and run your operation /// `op`. The operation should yield up a result (of type `R`) as /// well as a set of trait obligations that must be fully /// satisfied. These obligations will be processed and the /// canonical result created. /// /// Returns `NoSolution` in the event of any error. /// /// (It might be mildly nicer to implement this on `TyCtxt`, and /// not `InferCtxtBuilder`, but that is a bit tricky right now. /// In part because we would need a `for<'tcx>` sort of /// bound for the closure and in part because it is convenient to /// have `'tcx` be free on this function so that we can talk about /// `K: TypeFoldable<'tcx>`.) fn enter_canonical_trait_query( &mut self, canonical_key: &Canonical<'tcx, K>, operation: impl FnOnce(&InferCtxt<'_, 'tcx>, &mut dyn TraitEngine<'tcx>, K) -> Fallible, ) -> Fallible> where K: TypeFoldable<'tcx>, R: Debug + TypeFoldable<'tcx>, Canonical<'tcx, QueryResponse<'tcx, R>>: ArenaAllocatable<'tcx>, { self.enter_with_canonical( DUMMY_SP, canonical_key, |ref infcx, key, canonical_inference_vars| { let mut fulfill_cx = TraitEngine::new(infcx.tcx); let value = operation(infcx, &mut *fulfill_cx, key)?; infcx.make_canonicalized_query_response( canonical_inference_vars, value, &mut *fulfill_cx, ) }, ) } } pub trait OutlivesEnvironmentExt<'tcx> { fn add_implied_bounds( &mut self, infcx: &InferCtxt<'a, 'tcx>, fn_sig_tys: &[Ty<'tcx>], body_id: hir::HirId, span: Span, ); } impl<'tcx> OutlivesEnvironmentExt<'tcx> for OutlivesEnvironment<'tcx> { /// This method adds "implied bounds" into the outlives environment. /// Implied bounds are outlives relationships that we can deduce /// on the basis that certain types must be well-formed -- these are /// either the types that appear in the function signature or else /// the input types to an impl. For example, if you have a function /// like /// /// ``` /// fn foo<'a, 'b, T>(x: &'a &'b [T]) { } /// ``` /// /// we can assume in the caller's body that `'b: 'a` and that `T: /// 'b` (and hence, transitively, that `T: 'a`). This method would /// add those assumptions into the outlives-environment. /// /// Tests: `src/test/compile-fail/regions-free-region-ordering-*.rs` fn add_implied_bounds( &mut self, infcx: &InferCtxt<'a, 'tcx>, fn_sig_tys: &[Ty<'tcx>], body_id: hir::HirId, span: Span, ) { debug!("add_implied_bounds()"); for &ty in fn_sig_tys { let ty = infcx.resolve_vars_if_possible(&ty); debug!("add_implied_bounds: ty = {}", ty); let implied_bounds = infcx.implied_outlives_bounds(self.param_env, body_id, ty, span); self.add_outlives_bounds(Some(infcx), implied_bounds) } } }