// Copyright 2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. // Migrate documentation over from `std::vec` progressively. (This is // shown in docs so that people have something to refer too, even if // the page is rather empty.) #[allow(missing_doc)]; use cast::{forget, transmute}; use clone::Clone; use cmp::{Ord, Eq, Ordering, TotalEq, TotalOrd}; use container::{Container, Mutable}; use default::Default; use fmt; use iter::{DoubleEndedIterator, FromIterator, Extendable, Iterator, Rev}; use libc::{free, c_void}; use mem::{size_of, move_val_init}; use mem; use num; use num::{CheckedMul, CheckedAdd}; use ops::Drop; use option::{None, Option, Some}; use ptr::RawPtr; use ptr; use rt::global_heap::{malloc_raw, realloc_raw}; use raw::Slice; use vec::{ImmutableEqVector, ImmutableVector, Items, MutItems, MutableVector}; use vec::{RevItems}; #[unsafe_no_drop_flag] pub struct Vec { priv len: uint, priv cap: uint, priv ptr: *mut T } impl Vec { #[inline] pub fn new() -> Vec { Vec { len: 0, cap: 0, ptr: 0 as *mut T } } pub fn with_capacity(capacity: uint) -> Vec { if capacity == 0 { Vec::new() } else { let size = capacity.checked_mul(&size_of::()).expect("capacity overflow"); let ptr = unsafe { malloc_raw(size) }; Vec { len: 0, cap: capacity, ptr: ptr as *mut T } } } pub fn from_fn(length: uint, op: |uint| -> T) -> Vec { unsafe { let mut xs = Vec::with_capacity(length); while xs.len < length { move_val_init(xs.as_mut_slice().unsafe_mut_ref(xs.len), op(xs.len)); xs.len += 1; } xs } } /** * Partitions the vector into two vectors `(A,B)`, where all * elements of `A` satisfy `f` and all elements of `B` do not. */ #[inline] pub fn partition(self, f: |&T| -> bool) -> (Vec, Vec) { let mut lefts = Vec::new(); let mut rights = Vec::new(); for elt in self.move_iter() { if f(&elt) { lefts.push(elt); } else { rights.push(elt); } } (lefts, rights) } } impl Vec { pub fn from_slice(values: &[T]) -> Vec { values.iter().map(|x| x.clone()).collect() } pub fn from_elem(length: uint, value: T) -> Vec { unsafe { let mut xs = Vec::with_capacity(length); while xs.len < length { move_val_init(xs.as_mut_slice().unsafe_mut_ref(xs.len), value.clone()); xs.len += 1; } xs } } #[inline] pub fn push_all(&mut self, other: &[T]) { for element in other.iter() { self.push((*element).clone()) } } pub fn grow(&mut self, n: uint, initval: &T) { let new_len = self.len() + n; self.reserve(new_len); let mut i: uint = 0u; while i < n { self.push((*initval).clone()); i += 1u; } } pub fn grow_set(&mut self, index: uint, initval: &T, val: T) { let l = self.len(); if index >= l { self.grow(index - l + 1u, initval); } *self.get_mut(index) = val; } pub fn partitioned(&self, f: |&T| -> bool) -> (Vec, Vec) { let mut lefts = Vec::new(); let mut rights = Vec::new(); for elt in self.iter() { if f(elt) { lefts.push(elt.clone()); } else { rights.push(elt.clone()); } } (lefts, rights) } } impl Clone for Vec { fn clone(&self) -> Vec { let mut vector = Vec::with_capacity(self.len()); for element in self.iter() { vector.push((*element).clone()) } vector } } impl FromIterator for Vec { fn from_iterator>(iterator: &mut I) -> Vec { let (lower, _) = iterator.size_hint(); let mut vector = Vec::with_capacity(lower); for element in *iterator { vector.push(element) } vector } } impl Extendable for Vec { fn extend>(&mut self, iterator: &mut I) { let (lower, _) = iterator.size_hint(); self.reserve_additional(lower); for element in *iterator { self.push(element) } } } impl Eq for Vec { #[inline] fn eq(&self, other: &Vec) -> bool { self.as_slice() == other.as_slice() } } impl Ord for Vec { #[inline] fn lt(&self, other: &Vec) -> bool { self.as_slice() < other.as_slice() } } impl TotalEq for Vec { #[inline] fn equals(&self, other: &Vec) -> bool { self.as_slice().equals(&other.as_slice()) } } impl TotalOrd for Vec { #[inline] fn cmp(&self, other: &Vec) -> Ordering { self.as_slice().cmp(&other.as_slice()) } } impl Container for Vec { #[inline] fn len(&self) -> uint { self.len } } impl Vec { #[inline] pub fn capacity(&self) -> uint { self.cap } pub fn reserve_additional(&mut self, extra: uint) { if self.cap - self.len < extra { match self.len.checked_add(&extra) { None => fail!("Vec::reserve_additional: `uint` overflow"), Some(new_cap) => self.reserve(new_cap) } } } pub fn reserve(&mut self, capacity: uint) { if capacity >= self.len { self.reserve_exact(num::next_power_of_two(capacity)) } } pub fn reserve_exact(&mut self, capacity: uint) { if capacity >= self.len { let size = capacity.checked_mul(&size_of::()).expect("capacity overflow"); self.cap = capacity; unsafe { self.ptr = realloc_raw(self.ptr as *mut u8, size) as *mut T; } } } pub fn shrink_to_fit(&mut self) { if self.len == 0 { unsafe { free(self.ptr as *mut c_void) }; self.cap = 0; self.ptr = 0 as *mut T; } else { unsafe { // Overflow check is unnecessary as the vector is already at least this large. self.ptr = realloc_raw(self.ptr as *mut u8, self.len * size_of::()) as *mut T; } self.cap = self.len; } } #[inline] pub fn pop(&mut self) -> Option { if self.len == 0 { None } else { unsafe { self.len -= 1; Some(ptr::read(self.as_slice().unsafe_ref(self.len()))) } } } #[inline] pub fn push(&mut self, value: T) { if self.len == self.cap { if self.cap == 0 { self.cap += 2 } let old_size = self.cap * size_of::(); self.cap = self.cap * 2; let size = old_size * 2; if old_size > size { fail!("capacity overflow") } unsafe { self.ptr = realloc_raw(self.ptr as *mut u8, size) as *mut T; } } unsafe { let end = (self.ptr as *T).offset(self.len as int) as *mut T; move_val_init(&mut *end, value); self.len += 1; } } pub fn truncate(&mut self, len: uint) { unsafe { let mut i = len; // drop any extra elements while i < self.len { ptr::read(self.as_slice().unsafe_ref(i)); i += 1; } } self.len = len; } #[inline] pub fn as_slice<'a>(&'a self) -> &'a [T] { let slice = Slice { data: self.ptr as *T, len: self.len }; unsafe { transmute(slice) } } #[inline] pub fn as_mut_slice<'a>(&'a mut self) -> &'a mut [T] { let slice = Slice { data: self.ptr as *T, len: self.len }; unsafe { transmute(slice) } } #[inline] pub fn move_iter(self) -> MoveItems { unsafe { let iter = transmute(self.as_slice().iter()); let ptr = self.ptr as *mut c_void; forget(self); MoveItems { allocation: ptr, iter: iter } } } #[inline] pub fn move_rev_iter(self) -> Rev> { self.move_iter().rev() } #[inline] pub unsafe fn set_len(&mut self, len: uint) { self.len = len; } #[inline] pub fn get<'a>(&'a self, index: uint) -> &'a T { &self.as_slice()[index] } #[inline] pub fn get_mut<'a>(&'a mut self, index: uint) -> &'a mut T { &mut self.as_mut_slice()[index] } #[inline] pub fn iter<'a>(&'a self) -> Items<'a,T> { self.as_slice().iter() } #[inline] pub fn mut_iter<'a>(&'a mut self) -> MutItems<'a,T> { self.as_mut_slice().mut_iter() } #[inline] pub fn sort_by(&mut self, compare: |&T, &T| -> Ordering) { self.as_mut_slice().sort_by(compare) } #[inline] pub fn slice<'a>(&'a self, start: uint, end: uint) -> &'a [T] { self.as_slice().slice(start, end) } #[inline] pub fn tail<'a>(&'a self) -> &'a [T] { self.as_slice().tail() } #[inline] pub fn tailn<'a>(&'a self, n: uint) -> &'a [T] { self.as_slice().tailn(n) } #[inline] pub fn last<'a>(&'a self) -> Option<&'a T> { self.as_slice().last() } #[inline] pub fn mut_last<'a>(&'a mut self) -> Option<&'a mut T> { self.as_mut_slice().mut_last() } #[inline] pub fn swap_remove(&mut self, index: uint) -> Option { let length = self.len(); if index < length - 1 { self.as_mut_slice().swap(index, length - 1); } else if index >= length { return None } self.pop() } #[inline] pub fn unshift(&mut self, element: T) { self.insert(0, element) } #[inline] pub fn shift(&mut self) -> Option { self.remove(0) } pub fn insert(&mut self, index: uint, element: T) { let len = self.len(); assert!(index <= len); // space for the new element self.reserve(len + 1); unsafe { // infallible // The spot to put the new value { let p = self.as_mut_ptr().offset(index as int); // Shift everything over to make space. (Duplicating the // `index`th element into two consecutive places.) ptr::copy_memory(p.offset(1), &*p, len - index); // Write it in, overwriting the first copy of the `index`th // element. move_val_init(&mut *p, element); } self.set_len(len + 1); } } fn remove(&mut self, index: uint) -> Option { let len = self.len(); if index < len { unsafe { // infallible let ret; { // the place we are taking from. let ptr = self.as_mut_ptr().offset(index as int); // copy it out, unsafely having a copy of the value on // the stack and in the vector at the same time. ret = Some(ptr::read(ptr as *T)); // Shift everything down to fill in that spot. ptr::copy_memory(ptr, &*ptr.offset(1), len - index - 1); } self.set_len(len - 1); ret } } else { None } } #[inline] pub fn rev_iter<'a>(&'a self) -> RevItems<'a,T> { self.as_slice().rev_iter() } #[inline] #[deprecated="Use `xs.iter().map(closure)` instead."] pub fn map(&self, f: |t: &T| -> U) -> Vec { self.iter().map(f).collect() } pub fn push_all_move(&mut self, other: Vec) { for element in other.move_iter() { self.push(element) } } #[inline] pub fn mut_slice<'a>(&'a mut self, start: uint, end: uint) -> &'a mut [T] { self.as_mut_slice().mut_slice(start, end) } #[inline] pub fn reverse(&mut self) { self.as_mut_slice().reverse() } #[inline] pub fn slice_from<'a>(&'a self, start: uint) -> &'a [T] { self.as_slice().slice_from(start) } #[inline] pub fn slice_to<'a>(&'a self, end: uint) -> &'a [T] { self.as_slice().slice_to(end) } #[inline] pub fn init<'a>(&'a self) -> &'a [T] { self.slice(0, self.len() - 1) } #[inline] pub fn as_ptr(&self) -> *T { self.as_slice().as_ptr() } #[inline] pub fn as_mut_ptr(&mut self) -> *mut T { self.as_mut_slice().as_mut_ptr() } } impl Mutable for Vec { /// Clear the vector, removing all values. #[inline] fn clear(&mut self) { self.truncate(0) } } impl Vec { /// Return true if a vector contains an element with the given value pub fn contains(&self, x: &T) -> bool { self.as_slice().contains(x) } pub fn dedup(&mut self) { unsafe { // Although we have a mutable reference to `self`, we cannot make // *arbitrary* changes. The `Eq` comparisons could fail, so we // must ensure that the vector is in a valid state at all time. // // The way that we handle this is by using swaps; we iterate // over all the elements, swapping as we go so that at the end // the elements we wish to keep are in the front, and those we // wish to reject are at the back. We can then truncate the // vector. This operation is still O(n). // // Example: We start in this state, where `r` represents "next // read" and `w` represents "next_write`. // // r // +---+---+---+---+---+---+ // | 0 | 1 | 1 | 2 | 3 | 3 | // +---+---+---+---+---+---+ // w // // Comparing self[r] against self[w-1], tis is not a duplicate, so // we swap self[r] and self[w] (no effect as r==w) and then increment both // r and w, leaving us with: // // r // +---+---+---+---+---+---+ // | 0 | 1 | 1 | 2 | 3 | 3 | // +---+---+---+---+---+---+ // w // // Comparing self[r] against self[w-1], this value is a duplicate, // so we increment `r` but leave everything else unchanged: // // r // +---+---+---+---+---+---+ // | 0 | 1 | 1 | 2 | 3 | 3 | // +---+---+---+---+---+---+ // w // // Comparing self[r] against self[w-1], this is not a duplicate, // so swap self[r] and self[w] and advance r and w: // // r // +---+---+---+---+---+---+ // | 0 | 1 | 2 | 1 | 3 | 3 | // +---+---+---+---+---+---+ // w // // Not a duplicate, repeat: // // r // +---+---+---+---+---+---+ // | 0 | 1 | 2 | 3 | 1 | 3 | // +---+---+---+---+---+---+ // w // // Duplicate, advance r. End of vec. Truncate to w. let ln = self.len(); if ln < 1 { return; } // Avoid bounds checks by using unsafe pointers. let p = self.as_mut_slice().as_mut_ptr(); let mut r = 1; let mut w = 1; while r < ln { let p_r = p.offset(r as int); let p_wm1 = p.offset((w - 1) as int); if *p_r != *p_wm1 { if r != w { let p_w = p_wm1.offset(1); mem::swap(&mut *p_r, &mut *p_w); } w += 1; } r += 1; } self.truncate(w); } } } #[inline] pub fn append(mut first: Vec, second: &[T]) -> Vec { first.push_all(second); first } /// Appends one element to the vector provided. The vector itself is then /// returned for use again. #[inline] pub fn append_one(mut lhs: Vec, x: T) -> Vec { lhs.push(x); lhs } #[unsafe_destructor] impl Drop for Vec { fn drop(&mut self) { // This is (and should always remain) a no-op if the fields are // zeroed (when moving out, because of #[unsafe_no_drop_flag]). unsafe { for x in self.as_mut_slice().iter() { ptr::read(x); } free(self.ptr as *mut c_void) } } } impl Default for Vec { fn default() -> Vec { Vec::new() } } impl fmt::Show for Vec { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.as_slice().fmt(f) } } pub struct MoveItems { priv allocation: *mut c_void, // the block of memory allocated for the vector priv iter: Items<'static, T> } impl Iterator for MoveItems { #[inline] fn next(&mut self) -> Option { unsafe { self.iter.next().map(|x| ptr::read(x)) } } #[inline] fn size_hint(&self) -> (uint, Option) { self.iter.size_hint() } } impl DoubleEndedIterator for MoveItems { #[inline] fn next_back(&mut self) -> Option { unsafe { self.iter.next_back().map(|x| ptr::read(x)) } } } #[unsafe_destructor] impl Drop for MoveItems { fn drop(&mut self) { // destroy the remaining elements for _x in *self {} unsafe { free(self.allocation) } } } #[cfg(test)] mod tests { use super::Vec; use iter::{Iterator, range, Extendable}; use mem::{drop, size_of}; use ops::Drop; use option::{Some, None}; use ptr; #[test] fn test_small_vec_struct() { assert!(size_of::>() == size_of::() * 3); } #[test] fn test_double_drop() { struct TwoVec { x: Vec, y: Vec } struct DropCounter<'a> { count: &'a mut int } #[unsafe_destructor] impl<'a> Drop for DropCounter<'a> { fn drop(&mut self) { *self.count += 1; } } let mut count_x @ mut count_y = 0; { let mut tv = TwoVec { x: Vec::new(), y: Vec::new() }; tv.x.push(DropCounter {count: &mut count_x}); tv.y.push(DropCounter {count: &mut count_y}); // If Vec had a drop flag, here is where it would be zeroed. // Instead, it should rely on its internal state to prevent // doing anything significant when dropped multiple times. drop(tv.x); // Here tv goes out of scope, tv.y should be dropped, but not tv.x. } assert_eq!(count_x, 1); assert_eq!(count_y, 1); } #[test] fn test_reserve_additional() { let mut v = Vec::new(); assert_eq!(v.capacity(), 0); v.reserve_additional(2); assert!(v.capacity() >= 2); for i in range(0, 16) { v.push(i); } assert!(v.capacity() >= 16); v.reserve_additional(16); assert!(v.capacity() >= 32); v.push(16); v.reserve_additional(16); assert!(v.capacity() >= 33) } #[test] fn test_extend() { let mut v = Vec::new(); let mut w = Vec::new(); v.extend(&mut range(0, 3)); for i in range(0, 3) { w.push(i) } assert_eq!(v, w); v.extend(&mut range(3, 10)); for i in range(3, 10) { w.push(i) } assert_eq!(v, w); } }