//! This module contains functions for retrieve the original AST from lowered //! `hir`. #![deny(clippy::missing_docs_in_private_items)] use crate::utils::{is_expn_of, match_def_path, match_qpath, paths, resolve_node}; use crate::utils::sym; use if_chain::if_chain; use rustc::lint::LateContext; use rustc::{hir, ty}; use syntax::ast; use syntax::symbol::Symbol; /// Converts a hir binary operator to the corresponding `ast` type. pub fn binop(op: hir::BinOpKind) -> ast::BinOpKind { match op { hir::BinOpKind::Eq => ast::BinOpKind::Eq, hir::BinOpKind::Ge => ast::BinOpKind::Ge, hir::BinOpKind::Gt => ast::BinOpKind::Gt, hir::BinOpKind::Le => ast::BinOpKind::Le, hir::BinOpKind::Lt => ast::BinOpKind::Lt, hir::BinOpKind::Ne => ast::BinOpKind::Ne, hir::BinOpKind::Or => ast::BinOpKind::Or, hir::BinOpKind::Add => ast::BinOpKind::Add, hir::BinOpKind::And => ast::BinOpKind::And, hir::BinOpKind::BitAnd => ast::BinOpKind::BitAnd, hir::BinOpKind::BitOr => ast::BinOpKind::BitOr, hir::BinOpKind::BitXor => ast::BinOpKind::BitXor, hir::BinOpKind::Div => ast::BinOpKind::Div, hir::BinOpKind::Mul => ast::BinOpKind::Mul, hir::BinOpKind::Rem => ast::BinOpKind::Rem, hir::BinOpKind::Shl => ast::BinOpKind::Shl, hir::BinOpKind::Shr => ast::BinOpKind::Shr, hir::BinOpKind::Sub => ast::BinOpKind::Sub, } } /// Represent a range akin to `ast::ExprKind::Range`. #[derive(Debug, Copy, Clone)] pub struct Range<'a> { /// The lower bound of the range, or `None` for ranges such as `..X`. pub start: Option<&'a hir::Expr>, /// The upper bound of the range, or `None` for ranges such as `X..`. pub end: Option<&'a hir::Expr>, /// Whether the interval is open or closed. pub limits: ast::RangeLimits, } /// Higher a `hir` range to something similar to `ast::ExprKind::Range`. pub fn range<'a, 'b, 'tcx>(cx: &LateContext<'a, 'tcx>, expr: &'b hir::Expr) -> Option> { /// Finds the field named `name` in the field. Always return `Some` for /// convenience. fn get_field(name: Symbol, fields: &[hir::Field]) -> Option<&hir::Expr> { let expr = &fields.iter().find(|field| field.ident.name == name)?.expr; Some(expr) } let def_path = match cx.tables.expr_ty(expr).sty { ty::Adt(def, _) => cx.tcx.def_path(def.did), _ => return None, }; // sanity checks for std::ops::RangeXXXX if def_path.data.len() != 3 { return None; } if def_path.data.get(0)?.data.as_interned_str() != "ops" { return None; } if def_path.data.get(1)?.data.as_interned_str() != "range" { return None; } let type_name = def_path.data.get(2)?.data.as_interned_str(); let range_types = [ "RangeFrom", "RangeFull", "RangeInclusive", "Range", "RangeTo", "RangeToInclusive", ]; if !range_types.contains(&&*type_name.as_str()) { return None; } // The range syntax is expanded to literal paths starting with `core` or `std` // depending on // `#[no_std]`. Testing both instead of resolving the paths. match expr.node { hir::ExprKind::Path(ref path) => { if match_qpath(path, &*paths::RANGE_FULL_STD) || match_qpath(path, &*paths::RANGE_FULL) { Some(Range { start: None, end: None, limits: ast::RangeLimits::HalfOpen, }) } else { None } }, hir::ExprKind::Call(ref path, ref args) => { if let hir::ExprKind::Path(ref path) = path.node { if match_qpath(path, &*paths::RANGE_INCLUSIVE_STD_NEW) || match_qpath(path, &*paths::RANGE_INCLUSIVE_NEW) { Some(Range { start: Some(&args[0]), end: Some(&args[1]), limits: ast::RangeLimits::Closed, }) } else { None } } else { None } }, hir::ExprKind::Struct(ref path, ref fields, None) => { if match_qpath(path, &*paths::RANGE_FROM_STD) || match_qpath(path, &*paths::RANGE_FROM) { Some(Range { start: Some(get_field(*sym::start, fields)?), end: None, limits: ast::RangeLimits::HalfOpen, }) } else if match_qpath(path, &*paths::RANGE_STD) || match_qpath(path, &*paths::RANGE) { Some(Range { start: Some(get_field(*sym::start, fields)?), end: Some(get_field(*sym::end, fields)?), limits: ast::RangeLimits::HalfOpen, }) } else if match_qpath(path, &*paths::RANGE_TO_INCLUSIVE_STD) || match_qpath(path, &*paths::RANGE_TO_INCLUSIVE) { Some(Range { start: None, end: Some(get_field(*sym::end, fields)?), limits: ast::RangeLimits::Closed, }) } else if match_qpath(path, &*paths::RANGE_TO_STD) || match_qpath(path, &*paths::RANGE_TO) { Some(Range { start: None, end: Some(get_field(*sym::end, fields)?), limits: ast::RangeLimits::HalfOpen, }) } else { None } }, _ => None, } } /// Checks if a `let` statement is from a `for` loop desugaring. pub fn is_from_for_desugar(local: &hir::Local) -> bool { // This will detect plain for-loops without an actual variable binding: // // ``` // for x in some_vec { // // do stuff // } // ``` if_chain! { if let Some(ref expr) = local.init; if let hir::ExprKind::Match(_, _, hir::MatchSource::ForLoopDesugar) = expr.node; then { return true; } } // This detects a variable binding in for loop to avoid `let_unit_value` // lint (see issue #1964). // // ``` // for _ in vec![()] { // // anything // } // ``` if let hir::LocalSource::ForLoopDesugar = local.source { return true; } false } /// Recover the essential nodes of a desugared for loop: /// `for pat in arg { body }` becomes `(pat, arg, body)`. pub fn for_loop(expr: &hir::Expr) -> Option<(&hir::Pat, &hir::Expr, &hir::Expr)> { if_chain! { if let hir::ExprKind::Match(ref iterexpr, ref arms, hir::MatchSource::ForLoopDesugar) = expr.node; if let hir::ExprKind::Call(_, ref iterargs) = iterexpr.node; if iterargs.len() == 1 && arms.len() == 1 && arms[0].guard.is_none(); if let hir::ExprKind::Loop(ref block, _, _) = arms[0].body.node; if block.expr.is_none(); if let [ _, _, ref let_stmt, ref body ] = *block.stmts; if let hir::StmtKind::Local(ref local) = let_stmt.node; if let hir::StmtKind::Expr(ref expr) = body.node; then { return Some((&*local.pat, &iterargs[0], expr)); } } None } /// Recover the essential nodes of a desugared if block /// `if cond { then } else { els }` becomes `(cond, then, Some(els))` pub fn if_block(expr: &hir::Expr) -> Option<(&hir::Expr, &hir::Expr, Option<&hir::Expr>)> { if let hir::ExprKind::Match(ref cond, ref arms, hir::MatchSource::IfDesugar { contains_else_clause }) = expr.node { let cond = if let hir::ExprKind::DropTemps(ref cond) = cond.node { cond } else { panic!("If block desugar must contain DropTemps"); }; let then = &arms[0].body; let els = if contains_else_clause { Some(&*arms[1].body) } else { None }; Some((cond, then, els)) } else { None } } /// Represent the pre-expansion arguments of a `vec!` invocation. pub enum VecArgs<'a> { /// `vec![elem; len]` Repeat(&'a hir::Expr, &'a hir::Expr), /// `vec![a, b, c]` Vec(&'a [hir::Expr]), } /// Returns the arguments of the `vec!` macro if this expression was expanded /// from `vec!`. pub fn vec_macro<'e>(cx: &LateContext<'_, '_>, expr: &'e hir::Expr) -> Option> { if_chain! { if let hir::ExprKind::Call(ref fun, ref args) = expr.node; if let hir::ExprKind::Path(ref path) = fun.node; if is_expn_of(fun.span, *sym::vec).is_some(); if let Some(fun_def_id) = resolve_node(cx, path, fun.hir_id).opt_def_id(); then { return if match_def_path(cx, fun_def_id, &*paths::VEC_FROM_ELEM) && args.len() == 2 { // `vec![elem; size]` case Some(VecArgs::Repeat(&args[0], &args[1])) } else if match_def_path(cx, fun_def_id, &*paths::SLICE_INTO_VEC) && args.len() == 1 { // `vec![a, b, c]` case if_chain! { if let hir::ExprKind::Box(ref boxed) = args[0].node; if let hir::ExprKind::Array(ref args) = boxed.node; then { return Some(VecArgs::Vec(&*args)); } } None } else { None }; } } None }