// The Rust abstract syntax tree. import option; import codemap::{span, filename}; type spanned = {node: T, span: span}; type ident = str; // Functions may or may not have names. type fn_ident = option::t; // FIXME: with typestate constraint, could say // idents and types are the same length, and are // non-empty type path_ = {global: bool, idents: [ident], types: [@ty]}; type path = spanned; type crate_num = int; type node_id = int; type def_id = {crate: crate_num, node: node_id}; const local_crate: crate_num = 0; const crate_node_id: node_id = 0; enum ty_param_bound { bound_copy, bound_send, bound_iface(@ty), } type ty_param = {ident: ident, id: node_id, bounds: @[ty_param_bound]}; enum def { def_fn(def_id, purity), def_self(def_id), def_mod(def_id), def_native_mod(def_id), def_const(def_id), def_arg(def_id, mode), def_local(def_id, let_style), def_variant(def_id /* enum */, def_id /* variant */), def_ty(def_id), def_ty_param(def_id, uint), def_binding(def_id), def_use(def_id), def_native_ty(def_id), def_native_fn(def_id, purity), def_upvar(def_id, @def, node_id), // node_id == expr_fn or expr_fn_block } // The set of meta_items that define the compilation environment of the crate, // used to drive conditional compilation type crate_cfg = [@meta_item]; type crate = spanned; type crate_ = {directives: [@crate_directive], module: _mod, attrs: [attribute], config: crate_cfg}; enum crate_directive_ { cdir_src_mod(ident, [attribute]), cdir_dir_mod(ident, [@crate_directive], [attribute]), // NB: cdir_view_item is *not* processed by the rest of the compiler, the // attached view_items are sunk into the crate's module during parsing, // and processed (resolved, imported, etc.) there. This enum-variant // exists only to preserve the view items in order in case we decide to // pretty-print crates in the future. cdir_view_item(@view_item), cdir_syntax(@path), } type crate_directive = spanned; type meta_item = spanned; enum meta_item_ { meta_word(ident), meta_list(ident, [@meta_item]), meta_name_value(ident, lit), } type blk = spanned; type blk_ = {view_items: [@view_item], stmts: [@stmt], expr: option::t<@expr>, id: node_id, rules: blk_check_mode}; type pat = {id: node_id, node: pat_, span: span}; type field_pat = {ident: ident, pat: @pat}; enum pat_ { pat_wild, // A pat_ident may either be a new bound variable, // or a nullary enum (in which case the second field // is none). // In the nullary enum case, the parser can't determine // which it is. The resolver determines this, and // records this pattern's node_id in an auxiliary // set (of "pat_idents that refer to nullary tags") // After the resolution phase, code should never pattern- // match on a pat directly! Always call pat_util::normalize_pat -- // it turns any pat_idents that refer to nullary tags into pat_tags. pat_ident(@path, option::t<@pat>), pat_tag(@path, [@pat]), pat_rec([field_pat], bool), pat_tup([@pat]), pat_box(@pat), pat_uniq(@pat), pat_lit(@expr), pat_range(@expr, @expr), } enum mutability { mut, imm, maybe_mut, } enum proto { proto_bare, // native fn proto_any, // fn proto_uniq, // fn~ proto_box, // fn@ proto_block, // fn& } pure fn is_blockish(p: ast::proto) -> bool { alt p { proto_any | proto_block { true } proto_bare | proto_uniq | proto_box { false } } } enum binop { add, subtract, mul, div, rem, and, or, bitxor, bitand, bitor, lsl, lsr, asr, eq, lt, le, ne, ge, gt, } enum unop { box(mutability), uniq(mutability), deref, not, neg, } enum mode { by_ref, by_val, by_mut_ref, by_move, by_copy, mode_infer, } type stmt = spanned; enum stmt_ { stmt_decl(@decl, node_id), // expr without trailing semi-colon (must have unit type): stmt_expr(@expr, node_id), // expr with trailing semi-colon (may have any type): stmt_semi(@expr, node_id), } enum init_op { init_assign, init_move, } type initializer = {op: init_op, expr: @expr}; type local_ = // FIXME: should really be a refinement on pat {ty: @ty, pat: @pat, init: option::t, id: node_id}; type local = spanned; type decl = spanned; enum let_style { let_copy, let_ref, } enum decl_ { decl_local([(let_style, @local)]), decl_item(@item), } type arm = {pats: [@pat], guard: option::t<@expr>, body: blk}; type field_ = {mut: mutability, ident: ident, expr: @expr}; type field = spanned; enum blk_check_mode { default_blk, unchecked_blk, unsafe_blk, } enum expr_check_mode { claimed_expr, checked_expr, } type expr = {id: node_id, node: expr_, span: span}; enum expr_ { expr_vec([@expr], mutability), expr_rec([field], option::t<@expr>), expr_call(@expr, [@expr], bool), expr_tup([@expr]), expr_bind(@expr, [option::t<@expr>]), expr_binary(binop, @expr, @expr), expr_unary(unop, @expr), expr_lit(@lit), expr_cast(@expr, @ty), expr_if(@expr, blk, option::t<@expr>), expr_ternary(@expr, @expr, @expr), expr_while(@expr, blk), expr_for(@local, @expr, blk), expr_do_while(blk, @expr), expr_alt(@expr, [arm]), expr_fn(proto, fn_decl, blk, @capture_clause), expr_fn_block(fn_decl, blk), expr_block(blk), /* * FIXME: many of these @exprs should be constrained with * is_lval once we have constrained types working. */ expr_copy(@expr), expr_move(@expr, @expr), expr_assign(@expr, @expr), expr_swap(@expr, @expr), expr_assign_op(binop, @expr, @expr), expr_field(@expr, ident, [@ty]), expr_index(@expr, @expr), expr_path(@path), expr_fail(option::t<@expr>), expr_break, expr_cont, expr_ret(option::t<@expr>), expr_be(@expr), expr_log(int, @expr, @expr), /* just an assert, no significance to typestate */ expr_assert(@expr), /* preds that typestate is aware of */ expr_check(expr_check_mode, @expr), /* FIXME Would be nice if expr_check desugared to expr_if_check. */ expr_if_check(@expr, blk, option::t<@expr>), expr_mac(mac), } type capture_item = { id: int, name: ident, // Currently, can only capture a local var. span: span }; type capture_clause = { copies: [@capture_item], moves: [@capture_item] }; /* // Says whether this is a block the user marked as // "unchecked" enum blk_sort { blk_unchecked, // declared as "exception to effect-checking rules" blk_checked, // all typing rules apply } */ type mac = spanned; enum mac_ { mac_invoc(@path, @expr, option::t), mac_embed_type(@ty), mac_embed_block(blk), mac_ellipsis, } type lit = spanned; enum lit_ { lit_str(str), lit_int(i64, int_ty), lit_uint(u64, uint_ty), lit_float(str, float_ty), lit_nil, lit_bool(bool), } // NB: If you change this, you'll probably want to change the corresponding // type structure in middle/ty.rs as well. type mt = {ty: @ty, mut: mutability}; type ty_field_ = {ident: ident, mt: mt}; type ty_field = spanned; type ty_method = {ident: ident, decl: fn_decl, tps: [ty_param], span: span}; enum int_ty { ty_i, ty_char, ty_i8, ty_i16, ty_i32, ty_i64, } enum uint_ty { ty_u, ty_u8, ty_u16, ty_u32, ty_u64, } enum float_ty { ty_f, ty_f32, ty_f64, } type ty = spanned; enum ty_ { ty_nil, ty_bot, /* return type of ! functions and type of ret/fail/break/cont. there is no syntax for this type. */ /* bot represents the value of functions that don't return a value locally to their context. in contrast, things like log that do return, but don't return a meaningful value, have result type nil. */ ty_bool, ty_int(int_ty), ty_uint(uint_ty), ty_float(float_ty), ty_str, ty_box(mt), ty_uniq(mt), ty_vec(mt), ty_ptr(mt), ty_task, ty_port(@ty), ty_chan(@ty), ty_rec([ty_field]), ty_fn(proto, fn_decl), ty_tup([@ty]), ty_path(@path, node_id), ty_type, ty_constr(@ty, [@ty_constr]), ty_mac(mac), // ty_infer means the type should be inferred instead of it having been // specified. This should only appear at the "top level" of a type and not // nested in one. ty_infer, } /* A constraint arg that's a function argument is referred to by its position rather than name. This is so we could have higher-order functions that have constraints (potentially -- right now there's no way to write that), and also so that the typestate pass doesn't have to map a function name onto its decl. So, the constr_arg type is parameterized: it's instantiated with uint for declarations, and ident for uses. */ enum constr_arg_general_ { carg_base, carg_ident(T), carg_lit(@lit), } type fn_constr_arg = constr_arg_general_; type sp_constr_arg = spanned>; type ty_constr_arg = sp_constr_arg<@path>; type constr_arg = spanned; // Constrained types' args are parameterized by paths, since // we refer to paths directly and not by indices. // The implicit root of such path, in the constraint-list for a // constrained type, is * (referring to the base record) type constr_general_ = {path: @path, args: [@spanned>], id: ID}; // In the front end, constraints have a node ID attached. // Typeck turns this to a def_id, using the output of resolve. type constr_general = spanned>; type constr_ = constr_general_; type constr = spanned>; type ty_constr_ = constr_general_<@path, node_id>; type ty_constr = spanned; /* The parser generates ast::constrs; resolve generates a mapping from each function to a list of ty::constr_defs, corresponding to these. */ type arg = {mode: mode, ty: @ty, ident: ident, id: node_id}; type fn_decl = {inputs: [arg], output: @ty, purity: purity, cf: ret_style, constraints: [@constr]}; enum purity { pure_fn, // declared with "pure fn" unsafe_fn, // declared with "unsafe fn" impure_fn, // declared with "fn" } enum ret_style { noreturn, // functions with return type _|_ that always // raise an error or exit (i.e. never return to the caller) return_val, // everything else } type method = {ident: ident, tps: [ty_param], decl: fn_decl, body: blk, id: node_id, span: span}; type _mod = {view_items: [@view_item], items: [@item]}; enum native_abi { native_abi_rust_intrinsic, native_abi_cdecl, native_abi_stdcall, } type native_mod = {view_items: [@view_item], items: [@native_item]}; type variant_arg = {ty: @ty, id: node_id}; type variant_ = {name: ident, args: [variant_arg], id: node_id, disr_expr: option::t<@expr>}; type variant = spanned; type view_item = spanned; // FIXME: May want to just use path here, which would allow things like // 'import ::foo' type simple_path = [ident]; type import_ident_ = {name: ident, id: node_id}; type import_ident = spanned; enum view_item_ { view_item_use(ident, [@meta_item], node_id), view_item_import(ident, @simple_path, node_id), view_item_import_glob(@simple_path, node_id), view_item_import_from(@simple_path, [import_ident], node_id), view_item_export([ident], node_id), } // Meta-data associated with an item type attribute = spanned; // Distinguishes between attributes that decorate items and attributes that // are contained as statements within items. These two cases need to be // distinguished for pretty-printing. enum attr_style { attr_outer, attr_inner, } type attribute_ = {style: attr_style, value: meta_item}; type item = {ident: ident, attrs: [attribute], id: node_id, node: item_, span: span}; enum item_ { item_const(@ty, @expr), item_fn(fn_decl, [ty_param], blk), item_mod(_mod), item_native_mod(native_mod), item_ty(@ty, [ty_param]), item_tag([variant], [ty_param]), item_res(fn_decl /* dtor */, [ty_param], blk, node_id /* dtor id */, node_id /* ctor id */), item_iface([ty_param], [ty_method]), item_impl([ty_param], option::t<@ty> /* iface */, @ty /* self */, [@method]), } type native_item = {ident: ident, attrs: [attribute], node: native_item_, id: node_id, span: span}; enum native_item_ { native_item_ty, native_item_fn(fn_decl, [ty_param]), } // // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // End: //