// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Finds crate binaries and loads their metadata //! //! Might I be the first to welcome you to a world of platform differences, //! version requirements, dependency graphs, conflicting desires, and fun! This //! is the major guts (along with metadata::creader) of the compiler for loading //! crates and resolving dependencies. Let's take a tour! //! //! # The problem //! //! Each invocation of the compiler is immediately concerned with one primary //! problem, to connect a set of crates to resolved crates on the filesystem. //! Concretely speaking, the compiler follows roughly these steps to get here: //! //! 1. Discover a set of `extern crate` statements. //! 2. Transform these directives into crate names. If the directive does not //! have an explicit name, then the identifier is the name. //! 3. For each of these crate names, find a corresponding crate on the //! filesystem. //! //! Sounds easy, right? Let's walk into some of the nuances. //! //! ## Transitive Dependencies //! //! Let's say we've got three crates: A, B, and C. A depends on B, and B depends //! on C. When we're compiling A, we primarily need to find and locate B, but we //! also end up needing to find and locate C as well. //! //! The reason for this is that any of B's types could be composed of C's types, //! any function in B could return a type from C, etc. To be able to guarantee //! that we can always typecheck/translate any function, we have to have //! complete knowledge of the whole ecosystem, not just our immediate //! dependencies. //! //! So now as part of the "find a corresponding crate on the filesystem" step //! above, this involves also finding all crates for *all upstream //! dependencies*. This includes all dependencies transitively. //! //! ## Rlibs and Dylibs //! //! The compiler has two forms of intermediate dependencies. These are dubbed //! rlibs and dylibs for the static and dynamic variants, respectively. An rlib //! is a rustc-defined file format (currently just an ar archive) while a dylib //! is a platform-defined dynamic library. Each library has a metadata somewhere //! inside of it. //! //! A third kind of dependency is an rmeta file. These are metadata files and do //! not contain any code, etc. To a first approximation, these are treated in the //! same way as rlibs. Where there is both an rlib and an rmeta file, the rlib //! gets priority (even if the rmeta file is newer). An rmeta file is only //! useful for checking a downstream crate, attempting to link one will cause an //! error. //! //! When translating a crate name to a crate on the filesystem, we all of a //! sudden need to take into account both rlibs and dylibs! Linkage later on may //! use either one of these files, as each has their pros/cons. The job of crate //! loading is to discover what's possible by finding all candidates. //! //! Most parts of this loading systems keep the dylib/rlib as just separate //! variables. //! //! ## Where to look? //! //! We can't exactly scan your whole hard drive when looking for dependencies, //! so we need to places to look. Currently the compiler will implicitly add the //! target lib search path ($prefix/lib/rustlib/$target/lib) to any compilation, //! and otherwise all -L flags are added to the search paths. //! //! ## What criterion to select on? //! //! This a pretty tricky area of loading crates. Given a file, how do we know //! whether it's the right crate? Currently, the rules look along these lines: //! //! 1. Does the filename match an rlib/dylib pattern? That is to say, does the //! filename have the right prefix/suffix? //! 2. Does the filename have the right prefix for the crate name being queried? //! This is filtering for files like `libfoo*.rlib` and such. If the crate //! we're looking for was originally compiled with -C extra-filename, the //! extra filename will be included in this prefix to reduce reading //! metadata from crates that would otherwise share our prefix. //! 3. Is the file an actual rust library? This is done by loading the metadata //! from the library and making sure it's actually there. //! 4. Does the name in the metadata agree with the name of the library? //! 5. Does the target in the metadata agree with the current target? //! 6. Does the SVH match? (more on this later) //! //! If the file answers `yes` to all these questions, then the file is //! considered as being *candidate* for being accepted. It is illegal to have //! more than two candidates as the compiler has no method by which to resolve //! this conflict. Additionally, rlib/dylib candidates are considered //! separately. //! //! After all this has happened, we have 1 or two files as candidates. These //! represent the rlib/dylib file found for a library, and they're returned as //! being found. //! //! ### What about versions? //! //! A lot of effort has been put forth to remove versioning from the compiler. //! There have been forays in the past to have versioning baked in, but it was //! largely always deemed insufficient to the point that it was recognized that //! it's probably something the compiler shouldn't do anyway due to its //! complicated nature and the state of the half-baked solutions. //! //! With a departure from versioning, the primary criterion for loading crates //! is just the name of a crate. If we stopped here, it would imply that you //! could never link two crates of the same name from different sources //! together, which is clearly a bad state to be in. //! //! To resolve this problem, we come to the next section! //! //! # Expert Mode //! //! A number of flags have been added to the compiler to solve the "version //! problem" in the previous section, as well as generally enabling more //! powerful usage of the crate loading system of the compiler. The goal of //! these flags and options are to enable third-party tools to drive the //! compiler with prior knowledge about how the world should look. //! //! ## The `--extern` flag //! //! The compiler accepts a flag of this form a number of times: //! //! ```text //! --extern crate-name=path/to/the/crate.rlib //! ``` //! //! This flag is basically the following letter to the compiler: //! //! > Dear rustc, //! > //! > When you are attempting to load the immediate dependency `crate-name`, I //! > would like you to assume that the library is located at //! > `path/to/the/crate.rlib`, and look nowhere else. Also, please do not //! > assume that the path I specified has the name `crate-name`. //! //! This flag basically overrides most matching logic except for validating that //! the file is indeed a rust library. The same `crate-name` can be specified //! twice to specify the rlib/dylib pair. //! //! ## Enabling "multiple versions" //! //! This basically boils down to the ability to specify arbitrary packages to //! the compiler. For example, if crate A wanted to use Bv1 and Bv2, then it //! would look something like: //! //! ```compile_fail,E0463 //! extern crate b1; //! extern crate b2; //! //! fn main() {} //! ``` //! //! and the compiler would be invoked as: //! //! ```text //! rustc a.rs --extern b1=path/to/libb1.rlib --extern b2=path/to/libb2.rlib //! ``` //! //! In this scenario there are two crates named `b` and the compiler must be //! manually driven to be informed where each crate is. //! //! ## Frobbing symbols //! //! One of the immediate problems with linking the same library together twice //! in the same problem is dealing with duplicate symbols. The primary way to //! deal with this in rustc is to add hashes to the end of each symbol. //! //! In order to force hashes to change between versions of a library, if //! desired, the compiler exposes an option `-C metadata=foo`, which is used to //! initially seed each symbol hash. The string `foo` is prepended to each //! string-to-hash to ensure that symbols change over time. //! //! ## Loading transitive dependencies //! //! Dealing with same-named-but-distinct crates is not just a local problem, but //! one that also needs to be dealt with for transitive dependencies. Note that //! in the letter above `--extern` flags only apply to the *local* set of //! dependencies, not the upstream transitive dependencies. Consider this //! dependency graph: //! //! ```text //! A.1 A.2 //! | | //! | | //! B C //! \ / //! \ / //! D //! ``` //! //! In this scenario, when we compile `D`, we need to be able to distinctly //! resolve `A.1` and `A.2`, but an `--extern` flag cannot apply to these //! transitive dependencies. //! //! Note that the key idea here is that `B` and `C` are both *already compiled*. //! That is, they have already resolved their dependencies. Due to unrelated //! technical reasons, when a library is compiled, it is only compatible with //! the *exact same* version of the upstream libraries it was compiled against. //! We use the "Strict Version Hash" to identify the exact copy of an upstream //! library. //! //! With this knowledge, we know that `B` and `C` will depend on `A` with //! different SVH values, so we crawl the normal `-L` paths looking for //! `liba*.rlib` and filter based on the contained SVH. //! //! In the end, this ends up not needing `--extern` to specify upstream //! transitive dependencies. //! //! # Wrapping up //! //! That's the general overview of loading crates in the compiler, but it's by //! no means all of the necessary details. Take a look at the rest of //! metadata::locator or metadata::creader for all the juicy details! use cstore::{MetadataRef, MetadataBlob}; use creader::Library; use schema::{METADATA_HEADER, rustc_version}; use rustc::hir::svh::Svh; use rustc::middle::cstore::MetadataLoader; use rustc::session::{config, Session}; use rustc::session::filesearch::{FileSearch, FileMatches, FileDoesntMatch}; use rustc::session::search_paths::PathKind; use rustc::util::nodemap::FxHashMap; use errors::DiagnosticBuilder; use syntax::symbol::Symbol; use syntax_pos::Span; use rustc_back::target::{Target, TargetTriple}; use std::cmp; use std::collections::HashSet; use std::fmt; use std::fs; use std::io::{self, Read}; use std::path::{Path, PathBuf}; use std::time::Instant; use flate2::read::DeflateDecoder; use rustc_data_structures::owning_ref::OwningRef; pub struct CrateMismatch { path: PathBuf, got: String, } pub struct Context<'a> { pub sess: &'a Session, pub span: Span, pub ident: Symbol, pub crate_name: Symbol, pub hash: Option<&'a Svh>, pub extra_filename: Option<&'a str>, // points to either self.sess.target.target or self.sess.host, must match triple pub target: &'a Target, pub triple: &'a TargetTriple, pub filesearch: FileSearch<'a>, pub root: &'a Option, pub rejected_via_hash: Vec, pub rejected_via_triple: Vec, pub rejected_via_kind: Vec, pub rejected_via_version: Vec, pub rejected_via_filename: Vec, pub should_match_name: bool, pub is_proc_macro: Option, pub metadata_loader: &'a MetadataLoader, } pub struct CratePaths { pub ident: String, pub dylib: Option, pub rlib: Option, pub rmeta: Option, } #[derive(Copy, Clone, PartialEq)] enum CrateFlavor { Rlib, Rmeta, Dylib, } impl fmt::Display for CrateFlavor { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.write_str(match *self { CrateFlavor::Rlib => "rlib", CrateFlavor::Rmeta => "rmeta", CrateFlavor::Dylib => "dylib", }) } } impl CratePaths { fn paths(&self) -> Vec { self.dylib.iter().chain(self.rlib.iter()).chain(self.rmeta.iter()).cloned().collect() } } impl<'a> Context<'a> { pub fn maybe_load_library_crate(&mut self) -> Option { let mut seen_paths = HashSet::new(); match self.extra_filename { Some(s) => self.find_library_crate(s, &mut seen_paths) .or_else(|| self.find_library_crate("", &mut seen_paths)), None => self.find_library_crate("", &mut seen_paths) } } pub fn report_errs(&mut self) -> ! { let add = match self.root { &None => String::new(), &Some(ref r) => format!(" which `{}` depends on", r.ident), }; let mut msg = "the following crate versions were found:".to_string(); let mut err = if !self.rejected_via_hash.is_empty() { let mut err = struct_span_err!(self.sess, self.span, E0460, "found possibly newer version of crate `{}`{}", self.ident, add); err.note("perhaps that crate needs to be recompiled?"); let mismatches = self.rejected_via_hash.iter(); for &CrateMismatch { ref path, .. } in mismatches { msg.push_str(&format!("\ncrate `{}`: {}", self.ident, path.display())); } match self.root { &None => {} &Some(ref r) => { for path in r.paths().iter() { msg.push_str(&format!("\ncrate `{}`: {}", r.ident, path.display())); } } } err.note(&msg); err } else if !self.rejected_via_triple.is_empty() { let mut err = struct_span_err!(self.sess, self.span, E0461, "couldn't find crate `{}` \ with expected target triple {}{}", self.ident, self.triple, add); let mismatches = self.rejected_via_triple.iter(); for &CrateMismatch { ref path, ref got } in mismatches { msg.push_str(&format!("\ncrate `{}`, target triple {}: {}", self.ident, got, path.display())); } err.note(&msg); err } else if !self.rejected_via_kind.is_empty() { let mut err = struct_span_err!(self.sess, self.span, E0462, "found staticlib `{}` instead of rlib or dylib{}", self.ident, add); err.help("please recompile that crate using --crate-type lib"); let mismatches = self.rejected_via_kind.iter(); for &CrateMismatch { ref path, .. } in mismatches { msg.push_str(&format!("\ncrate `{}`: {}", self.ident, path.display())); } err.note(&msg); err } else if !self.rejected_via_version.is_empty() { let mut err = struct_span_err!(self.sess, self.span, E0514, "found crate `{}` compiled by an incompatible version \ of rustc{}", self.ident, add); err.help(&format!("please recompile that crate using this compiler ({})", rustc_version())); let mismatches = self.rejected_via_version.iter(); for &CrateMismatch { ref path, ref got } in mismatches { msg.push_str(&format!("\ncrate `{}` compiled by {}: {}", self.ident, got, path.display())); } err.note(&msg); err } else { let mut err = struct_span_err!(self.sess, self.span, E0463, "can't find crate for `{}`{}", self.ident, add); if (self.ident == "std" || self.ident == "core") && self.triple != &TargetTriple::from_triple(config::host_triple()) { err.note(&format!("the `{}` target may not be installed", self.triple)); } err.span_label(self.span, "can't find crate"); err }; if !self.rejected_via_filename.is_empty() { let dylibname = self.dylibname(); let mismatches = self.rejected_via_filename.iter(); for &CrateMismatch { ref path, .. } in mismatches { err.note(&format!("extern location for {} is of an unknown type: {}", self.crate_name, path.display())) .help(&format!("file name should be lib*.rlib or {}*.{}", dylibname.0, dylibname.1)); } } err.emit(); self.sess.abort_if_errors(); unreachable!(); } fn find_library_crate(&mut self, extra_prefix: &str, seen_paths: &mut HashSet) -> Option { // If an SVH is specified, then this is a transitive dependency that // must be loaded via -L plus some filtering. if self.hash.is_none() { self.should_match_name = false; if let Some(s) = self.sess.opts.externs.get(&self.crate_name.as_str()) { return self.find_commandline_library(s.iter()); } self.should_match_name = true; } let dypair = self.dylibname(); let staticpair = self.staticlibname(); // want: crate_name.dir_part() + prefix + crate_name.file_part + "-" let dylib_prefix = format!("{}{}{}", dypair.0, self.crate_name, extra_prefix); let rlib_prefix = format!("lib{}{}", self.crate_name, extra_prefix); let staticlib_prefix = format!("{}{}{}", staticpair.0, self.crate_name, extra_prefix); let mut candidates = FxHashMap(); let mut staticlibs = vec![]; // First, find all possible candidate rlibs and dylibs purely based on // the name of the files themselves. We're trying to match against an // exact crate name and a possibly an exact hash. // // During this step, we can filter all found libraries based on the // name and id found in the crate id (we ignore the path portion for // filename matching), as well as the exact hash (if specified). If we // end up having many candidates, we must look at the metadata to // perform exact matches against hashes/crate ids. Note that opening up // the metadata is where we do an exact match against the full contents // of the crate id (path/name/id). // // The goal of this step is to look at as little metadata as possible. self.filesearch.search(|path, kind| { let file = match path.file_name().and_then(|s| s.to_str()) { None => return FileDoesntMatch, Some(file) => file, }; let (hash, found_kind) = if file.starts_with(&rlib_prefix) && file.ends_with(".rlib") { (&file[(rlib_prefix.len())..(file.len() - ".rlib".len())], CrateFlavor::Rlib) } else if file.starts_with(&rlib_prefix) && file.ends_with(".rmeta") { (&file[(rlib_prefix.len())..(file.len() - ".rmeta".len())], CrateFlavor::Rmeta) } else if file.starts_with(&dylib_prefix) && file.ends_with(&dypair.1) { (&file[(dylib_prefix.len())..(file.len() - dypair.1.len())], CrateFlavor::Dylib) } else { if file.starts_with(&staticlib_prefix) && file.ends_with(&staticpair.1) { staticlibs.push(CrateMismatch { path: path.to_path_buf(), got: "static".to_string(), }); } return FileDoesntMatch; }; info!("lib candidate: {}", path.display()); let hash_str = hash.to_string(); let slot = candidates.entry(hash_str) .or_insert_with(|| (FxHashMap(), FxHashMap(), FxHashMap())); let (ref mut rlibs, ref mut rmetas, ref mut dylibs) = *slot; fs::canonicalize(path) .map(|p| { if seen_paths.contains(&p) { return FileDoesntMatch }; seen_paths.insert(p.clone()); match found_kind { CrateFlavor::Rlib => { rlibs.insert(p, kind); } CrateFlavor::Rmeta => { rmetas.insert(p, kind); } CrateFlavor::Dylib => { dylibs.insert(p, kind); } } FileMatches }) .unwrap_or(FileDoesntMatch) }); self.rejected_via_kind.extend(staticlibs); // We have now collected all known libraries into a set of candidates // keyed of the filename hash listed. For each filename, we also have a // list of rlibs/dylibs that apply. Here, we map each of these lists // (per hash), to a Library candidate for returning. // // A Library candidate is created if the metadata for the set of // libraries corresponds to the crate id and hash criteria that this // search is being performed for. let mut libraries = FxHashMap(); for (_hash, (rlibs, rmetas, dylibs)) in candidates { let mut slot = None; let rlib = self.extract_one(rlibs, CrateFlavor::Rlib, &mut slot); let rmeta = self.extract_one(rmetas, CrateFlavor::Rmeta, &mut slot); let dylib = self.extract_one(dylibs, CrateFlavor::Dylib, &mut slot); if let Some((h, m)) = slot { libraries.insert(h, Library { dylib, rlib, rmeta, metadata: m, }); } } // Having now translated all relevant found hashes into libraries, see // what we've got and figure out if we found multiple candidates for // libraries or not. match libraries.len() { 0 => None, 1 => Some(libraries.into_iter().next().unwrap().1), _ => { let mut err = struct_span_err!(self.sess, self.span, E0464, "multiple matching crates for `{}`", self.crate_name); let candidates = libraries.iter().filter_map(|(_, lib)| { let crate_name = &lib.metadata.get_root().name.as_str(); match &(&lib.dylib, &lib.rlib) { &(&Some((ref pd, _)), &Some((ref pr, _))) => { Some(format!("\ncrate `{}`: {}\n{:>padding$}", crate_name, pd.display(), pr.display(), padding=8 + crate_name.len())) } &(&Some((ref p, _)), &None) | &(&None, &Some((ref p, _))) => { Some(format!("\ncrate `{}`: {}", crate_name, p.display())) } &(&None, &None) => None, } }).collect::(); err.note(&format!("candidates:{}", candidates)); err.emit(); None } } } // Attempts to extract *one* library from the set `m`. If the set has no // elements, `None` is returned. If the set has more than one element, then // the errors and notes are emitted about the set of libraries. // // With only one library in the set, this function will extract it, and then // read the metadata from it if `*slot` is `None`. If the metadata couldn't // be read, it is assumed that the file isn't a valid rust library (no // errors are emitted). fn extract_one(&mut self, m: FxHashMap, flavor: CrateFlavor, slot: &mut Option<(Svh, MetadataBlob)>) -> Option<(PathBuf, PathKind)> { let mut ret: Option<(PathBuf, PathKind)> = None; let mut error = 0; if slot.is_some() { // FIXME(#10786): for an optimization, we only read one of the // libraries' metadata sections. In theory we should // read both, but reading dylib metadata is quite // slow. if m.is_empty() { return None; } else if m.len() == 1 { return Some(m.into_iter().next().unwrap()); } } let mut err: Option = None; for (lib, kind) in m { info!("{} reading metadata from: {}", flavor, lib.display()); let (hash, metadata) = match get_metadata_section(self.target, flavor, &lib, self.metadata_loader) { Ok(blob) => { if let Some(h) = self.crate_matches(&blob, &lib) { (h, blob) } else { info!("metadata mismatch"); continue; } } Err(err) => { info!("no metadata found: {}", err); continue; } }; // If we see multiple hashes, emit an error about duplicate candidates. if slot.as_ref().map_or(false, |s| s.0 != hash) { let mut e = struct_span_err!(self.sess, self.span, E0465, "multiple {} candidates for `{}` found", flavor, self.crate_name); e.span_note(self.span, &format!(r"candidate #1: {}", ret.as_ref() .unwrap() .0 .display())); if let Some(ref mut e) = err { e.emit(); } err = Some(e); error = 1; *slot = None; } if error > 0 { error += 1; err.as_mut().unwrap().span_note(self.span, &format!(r"candidate #{}: {}", error, lib.display())); continue; } // Ok so at this point we've determined that `(lib, kind)` above is // a candidate crate to load, and that `slot` is either none (this // is the first crate of its kind) or if some the previous path has // the exact same hash (e.g. it's the exact same crate). // // In principle these two candidate crates are exactly the same so // we can choose either of them to link. As a stupidly gross hack, // however, we favor crate in the sysroot. // // You can find more info in rust-lang/rust#39518 and various linked // issues, but the general gist is that during testing libstd the // compilers has two candidates to choose from: one in the sysroot // and one in the deps folder. These two crates are the exact same // crate but if the compiler chooses the one in the deps folder // it'll cause spurious errors on Windows. // // As a result, we favor the sysroot crate here. Note that the // candidates are all canonicalized, so we canonicalize the sysroot // as well. if let Some((ref prev, _)) = ret { let sysroot = self.sess.sysroot(); let sysroot = sysroot.canonicalize() .unwrap_or(sysroot.to_path_buf()); if prev.starts_with(&sysroot) { continue } } *slot = Some((hash, metadata)); ret = Some((lib, kind)); } if error > 0 { err.unwrap().emit(); None } else { ret } } fn crate_matches(&mut self, metadata: &MetadataBlob, libpath: &Path) -> Option { let rustc_version = rustc_version(); let found_version = metadata.get_rustc_version(); if found_version != rustc_version { info!("Rejecting via version: expected {} got {}", rustc_version, found_version); self.rejected_via_version.push(CrateMismatch { path: libpath.to_path_buf(), got: found_version, }); return None; } let root = metadata.get_root(); if let Some(is_proc_macro) = self.is_proc_macro { if root.macro_derive_registrar.is_some() != is_proc_macro { return None; } } if self.should_match_name { if self.crate_name != root.name { info!("Rejecting via crate name"); return None; } } if &root.triple != self.triple { info!("Rejecting via crate triple: expected {} got {}", self.triple, root.triple); self.rejected_via_triple.push(CrateMismatch { path: libpath.to_path_buf(), got: format!("{}", root.triple), }); return None; } if let Some(myhash) = self.hash { if *myhash != root.hash { info!("Rejecting via hash: expected {} got {}", *myhash, root.hash); self.rejected_via_hash.push(CrateMismatch { path: libpath.to_path_buf(), got: myhash.to_string(), }); return None; } } Some(root.hash) } // Returns the corresponding (prefix, suffix) that files need to have for // dynamic libraries fn dylibname(&self) -> (String, String) { let t = &self.target; (t.options.dll_prefix.clone(), t.options.dll_suffix.clone()) } // Returns the corresponding (prefix, suffix) that files need to have for // static libraries fn staticlibname(&self) -> (String, String) { let t = &self.target; (t.options.staticlib_prefix.clone(), t.options.staticlib_suffix.clone()) } fn find_commandline_library<'b, LOCS>(&mut self, locs: LOCS) -> Option where LOCS: Iterator { // First, filter out all libraries that look suspicious. We only accept // files which actually exist that have the correct naming scheme for // rlibs/dylibs. let sess = self.sess; let dylibname = self.dylibname(); let mut rlibs = FxHashMap(); let mut rmetas = FxHashMap(); let mut dylibs = FxHashMap(); { let locs = locs.map(|l| PathBuf::from(l)).filter(|loc| { if !loc.exists() { sess.err(&format!("extern location for {} does not exist: {}", self.crate_name, loc.display())); return false; } let file = match loc.file_name().and_then(|s| s.to_str()) { Some(file) => file, None => { sess.err(&format!("extern location for {} is not a file: {}", self.crate_name, loc.display())); return false; } }; if file.starts_with("lib") && (file.ends_with(".rlib") || file.ends_with(".rmeta")) { return true; } else { let (ref prefix, ref suffix) = dylibname; if file.starts_with(&prefix[..]) && file.ends_with(&suffix[..]) { return true; } } self.rejected_via_filename.push(CrateMismatch { path: loc.clone(), got: String::new(), }); false }); // Now that we have an iterator of good candidates, make sure // there's at most one rlib and at most one dylib. for loc in locs { if loc.file_name().unwrap().to_str().unwrap().ends_with(".rlib") { rlibs.insert(fs::canonicalize(&loc).unwrap(), PathKind::ExternFlag); } else if loc.file_name().unwrap().to_str().unwrap().ends_with(".rmeta") { rmetas.insert(fs::canonicalize(&loc).unwrap(), PathKind::ExternFlag); } else { dylibs.insert(fs::canonicalize(&loc).unwrap(), PathKind::ExternFlag); } } }; // Extract the rlib/dylib pair. let mut slot = None; let rlib = self.extract_one(rlibs, CrateFlavor::Rlib, &mut slot); let rmeta = self.extract_one(rmetas, CrateFlavor::Rmeta, &mut slot); let dylib = self.extract_one(dylibs, CrateFlavor::Dylib, &mut slot); if rlib.is_none() && rmeta.is_none() && dylib.is_none() { return None; } match slot { Some((_, metadata)) => { Some(Library { dylib, rlib, rmeta, metadata, }) } None => None, } } } // Just a small wrapper to time how long reading metadata takes. fn get_metadata_section(target: &Target, flavor: CrateFlavor, filename: &Path, loader: &MetadataLoader) -> Result { let start = Instant::now(); let ret = get_metadata_section_imp(target, flavor, filename, loader); info!("reading {:?} => {:?}", filename.file_name().unwrap(), start.elapsed()); return ret; } fn get_metadata_section_imp(target: &Target, flavor: CrateFlavor, filename: &Path, loader: &MetadataLoader) -> Result { if !filename.exists() { return Err(format!("no such file: '{}'", filename.display())); } let raw_bytes: MetadataRef = match flavor { CrateFlavor::Rlib => loader.get_rlib_metadata(target, filename)?, CrateFlavor::Dylib => { let buf = loader.get_dylib_metadata(target, filename)?; // The header is uncompressed let header_len = METADATA_HEADER.len(); debug!("checking {} bytes of metadata-version stamp", header_len); let header = &buf[..cmp::min(header_len, buf.len())]; if header != METADATA_HEADER { return Err(format!("incompatible metadata version found: '{}'", filename.display())); } // Header is okay -> inflate the actual metadata let compressed_bytes = &buf[header_len..]; debug!("inflating {} bytes of compressed metadata", compressed_bytes.len()); let mut inflated = Vec::new(); match DeflateDecoder::new(compressed_bytes).read_to_end(&mut inflated) { Ok(_) => { let buf = unsafe { OwningRef::new_assert_stable_address(inflated) }; rustc_erase_owner!(buf.map_owner_box()) } Err(_) => { return Err(format!("failed to decompress metadata: {}", filename.display())); } } } CrateFlavor::Rmeta => { let buf = fs::read(filename).map_err(|_| format!("failed to read rmeta metadata: '{}'", filename.display()))?; rustc_erase_owner!(OwningRef::new(buf).map_owner_box()) } }; let blob = MetadataBlob(raw_bytes); if blob.is_compatible() { Ok(blob) } else { Err(format!("incompatible metadata version found: '{}'", filename.display())) } } // A diagnostic function for dumping crate metadata to an output stream pub fn list_file_metadata(target: &Target, path: &Path, loader: &MetadataLoader, out: &mut io::Write) -> io::Result<()> { let filename = path.file_name().unwrap().to_str().unwrap(); let flavor = if filename.ends_with(".rlib") { CrateFlavor::Rlib } else if filename.ends_with(".rmeta") { CrateFlavor::Rmeta } else { CrateFlavor::Dylib }; match get_metadata_section(target, flavor, path, loader) { Ok(metadata) => metadata.list_crate_metadata(out), Err(msg) => write!(out, "{}\n", msg), } }