// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use core::prelude::*; use ast::*; use ast; use ast_util; use codemap::{span, spanned}; use opt_vec; use parse::token; use visit; use core::hashmap::HashMap; use core::int; use core::option; use core::str; use core::to_bytes; pub fn path_name_i(idents: &[ident], intr: @token::ident_interner) -> ~str { // FIXME: Bad copies (#2543 -- same for everything else that says "bad") str::connect(idents.map(|i| copy *intr.get(*i)), "::") } pub fn path_to_ident(p: @Path) -> ident { copy *p.idents.last() } pub fn local_def(id: node_id) -> def_id { ast::def_id { crate: local_crate, node: id } } pub fn is_local(did: ast::def_id) -> bool { did.crate == local_crate } pub fn stmt_id(s: &stmt) -> node_id { match s.node { stmt_decl(_, id) => id, stmt_expr(_, id) => id, stmt_semi(_, id) => id, stmt_mac(*) => fail!("attempted to analyze unexpanded stmt") } } pub fn variant_def_ids(d: def) -> Option<(def_id, def_id)> { match d { def_variant(enum_id, var_id) => { Some((enum_id, var_id)) } _ => None } } pub fn def_id_of_def(d: def) -> def_id { match d { def_fn(id, _) | def_static_method(id, _, _) | def_mod(id) | def_foreign_mod(id) | def_const(id) | def_variant(_, id) | def_ty(id) | def_ty_param(id, _) | def_use(id) | def_struct(id) | def_trait(id) => { id } def_arg(id, _) | def_local(id, _) | def_self(id, _) | def_self_ty(id) | def_upvar(id, _, _, _) | def_binding(id, _) | def_region(id) | def_typaram_binder(id) | def_label(id) => { local_def(id) } def_prim_ty(_) => fail!() } } pub fn binop_to_str(op: binop) -> ~str { match op { add => return ~"+", subtract => return ~"-", mul => return ~"*", div => return ~"/", rem => return ~"%", and => return ~"&&", or => return ~"||", bitxor => return ~"^", bitand => return ~"&", bitor => return ~"|", shl => return ~"<<", shr => return ~">>", eq => return ~"==", lt => return ~"<", le => return ~"<=", ne => return ~"!=", ge => return ~">=", gt => return ~">" } } pub fn binop_to_method_name(op: binop) -> Option<~str> { match op { add => return Some(~"add"), subtract => return Some(~"sub"), mul => return Some(~"mul"), div => return Some(~"div"), rem => return Some(~"rem"), bitxor => return Some(~"bitxor"), bitand => return Some(~"bitand"), bitor => return Some(~"bitor"), shl => return Some(~"shl"), shr => return Some(~"shr"), lt => return Some(~"lt"), le => return Some(~"le"), ge => return Some(~"ge"), gt => return Some(~"gt"), eq => return Some(~"eq"), ne => return Some(~"ne"), and | or => return None } } pub fn lazy_binop(b: binop) -> bool { match b { and => true, or => true, _ => false } } pub fn is_shift_binop(b: binop) -> bool { match b { shl => true, shr => true, _ => false } } pub fn unop_to_str(op: unop) -> ~str { match op { box(mt) => if mt == m_mutbl { ~"@mut " } else { ~"@" }, uniq(mt) => if mt == m_mutbl { ~"~mut " } else { ~"~" }, deref => ~"*", not => ~"!", neg => ~"-" } } pub fn is_path(e: @expr) -> bool { return match e.node { expr_path(_) => true, _ => false }; } pub fn int_ty_to_str(t: int_ty) -> ~str { match t { ty_char => ~"u8", // ??? ty_i => ~"", ty_i8 => ~"i8", ty_i16 => ~"i16", ty_i32 => ~"i32", ty_i64 => ~"i64" } } pub fn int_ty_max(t: int_ty) -> u64 { match t { ty_i8 => 0x80u64, ty_i16 => 0x8000u64, ty_i | ty_char | ty_i32 => 0x80000000u64, // actually ni about ty_i ty_i64 => 0x8000000000000000u64 } } pub fn uint_ty_to_str(t: uint_ty) -> ~str { match t { ty_u => ~"u", ty_u8 => ~"u8", ty_u16 => ~"u16", ty_u32 => ~"u32", ty_u64 => ~"u64" } } pub fn uint_ty_max(t: uint_ty) -> u64 { match t { ty_u8 => 0xffu64, ty_u16 => 0xffffu64, ty_u | ty_u32 => 0xffffffffu64, // actually ni about ty_u ty_u64 => 0xffffffffffffffffu64 } } pub fn float_ty_to_str(t: float_ty) -> ~str { match t { ty_f => ~"f", ty_f32 => ~"f32", ty_f64 => ~"f64" } } pub fn is_call_expr(e: @expr) -> bool { match e.node { expr_call(*) => true, _ => false } } // This makes def_id hashable impl to_bytes::IterBytes for def_id { #[inline(always)] fn iter_bytes(&self, lsb0: bool, f: to_bytes::Cb) -> bool { self.crate.iter_bytes(lsb0, f) && self.node.iter_bytes(lsb0, f) } } pub fn block_from_expr(e: @expr) -> blk { let blk_ = default_block(~[], option::Some::<@expr>(e), e.id); return spanned {node: blk_, span: e.span}; } pub fn default_block( stmts1: ~[@stmt], expr1: Option<@expr>, id1: node_id ) -> blk_ { ast::blk_ { view_items: ~[], stmts: stmts1, expr: expr1, id: id1, rules: default_blk, } } pub fn ident_to_path(s: span, i: ident) -> @Path { @ast::Path { span: s, global: false, idents: ~[i], rp: None, types: ~[] } } pub fn ident_to_pat(id: node_id, s: span, i: ident) -> @pat { @ast::pat { id: id, node: pat_ident(bind_infer, ident_to_path(s, i), None), span: s } } pub fn is_unguarded(a: &arm) -> bool { match a.guard { None => true, _ => false } } pub fn unguarded_pat(a: &arm) -> Option<~[@pat]> { if is_unguarded(a) { Some(/* FIXME (#2543) */ copy a.pats) } else { None } } pub fn public_methods(ms: ~[@method]) -> ~[@method] { do ms.filtered |m| { match m.vis { public => true, _ => false } } } // extract a ty_method from a trait_method. if the trait_method is // a default, pull out the useful fields to make a ty_method pub fn trait_method_to_ty_method(method: &trait_method) -> ty_method { match *method { required(ref m) => copy *m, provided(ref m) => { ty_method { ident: m.ident, attrs: copy m.attrs, purity: m.purity, decl: copy m.decl, generics: copy m.generics, explicit_self: m.explicit_self, id: m.id, span: m.span, } } } } pub fn split_trait_methods(trait_methods: &[trait_method]) -> (~[ty_method], ~[@method]) { let mut reqd = ~[]; let mut provd = ~[]; for trait_methods.each |trt_method| { match *trt_method { required(ref tm) => reqd.push(copy *tm), provided(m) => provd.push(m) } }; (reqd, provd) } pub fn struct_field_visibility(field: ast::struct_field) -> visibility { match field.node.kind { ast::named_field(_, visibility) => visibility, ast::unnamed_field => ast::public } } pub trait inlined_item_utils { fn ident(&self) -> ident; fn id(&self) -> ast::node_id; fn accept(&self, e: E, v: visit::vt); } impl inlined_item_utils for inlined_item { fn ident(&self) -> ident { match *self { ii_item(i) => /* FIXME (#2543) */ copy i.ident, ii_foreign(i) => /* FIXME (#2543) */ copy i.ident, ii_method(_, m) => /* FIXME (#2543) */ copy m.ident, } } fn id(&self) -> ast::node_id { match *self { ii_item(i) => i.id, ii_foreign(i) => i.id, ii_method(_, m) => m.id, } } fn accept(&self, e: E, v: visit::vt) { match *self { ii_item(i) => (v.visit_item)(i, e, v), ii_foreign(i) => (v.visit_foreign_item)(i, e, v), ii_method(_, m) => visit::visit_method_helper(m, e, v), } } } /* True if d is either a def_self, or a chain of def_upvars referring to a def_self */ pub fn is_self(d: ast::def) -> bool { match d { def_self(*) => true, def_upvar(_, d, _, _) => is_self(*d), _ => false } } /// Maps a binary operator to its precedence pub fn operator_prec(op: ast::binop) -> uint { match op { mul | div | rem => 12u, // 'as' sits between here with 11 add | subtract => 10u, shl | shr => 9u, bitand => 8u, bitxor => 7u, bitor => 6u, lt | le | ge | gt => 4u, eq | ne => 3u, and => 2u, or => 1u } } /// Precedence of the `as` operator, which is a binary operator /// not appearing in the prior table. pub static as_prec: uint = 11u; pub fn empty_generics() -> Generics { Generics {lifetimes: opt_vec::Empty, ty_params: opt_vec::Empty} } // ______________________________________________________________________ // Enumerating the IDs which appear in an AST #[deriving(Encodable, Decodable)] pub struct id_range { min: node_id, max: node_id, } impl id_range { pub fn max() -> id_range { id_range { min: int::max_value, max: int::min_value, } } pub fn empty(&self) -> bool { self.min >= self.max } pub fn add(&mut self, id: node_id) { self.min = int::min(self.min, id); self.max = int::max(self.max, id + 1); } } pub fn id_visitor(vfn: @fn(node_id, T)) -> visit::vt { let visit_generics: @fn(&Generics, T) = |generics, t| { for generics.ty_params.each |p| { vfn(p.id, t); } for generics.lifetimes.each |p| { vfn(p.id, t); } }; visit::mk_vt(@visit::Visitor { visit_mod: |m, sp, id, t, vt| { vfn(id, t); visit::visit_mod(m, sp, id, t, vt); }, visit_view_item: |vi, t, vt| { match vi.node { view_item_extern_mod(_, _, id) => vfn(id, t), view_item_use(ref vps) => { for vps.each |vp| { match vp.node { view_path_simple(_, _, id) => vfn(id, t), view_path_glob(_, id) => vfn(id, t), view_path_list(_, ref paths, id) => { vfn(id, t); for paths.each |p| { vfn(p.node.id, t); } } } } } } visit::visit_view_item(vi, t, vt); }, visit_foreign_item: |ni, t, vt| { vfn(ni.id, t); visit::visit_foreign_item(ni, t, vt); }, visit_item: |i, t, vt| { vfn(i.id, t); match i.node { item_enum(ref enum_definition, _) => for (*enum_definition).variants.each |v| { vfn(v.node.id, t); }, _ => () } visit::visit_item(i, t, vt); }, visit_local: |l, t, vt| { vfn(l.node.id, t); visit::visit_local(l, t, vt); }, visit_block: |b, t, vt| { vfn(b.node.id, t); visit::visit_block(b, t, vt); }, visit_stmt: |s, t, vt| { vfn(ast_util::stmt_id(s), t); visit::visit_stmt(s, t, vt); }, visit_pat: |p, t, vt| { vfn(p.id, t); visit::visit_pat(p, t, vt); }, visit_expr: |e, t, vt| { for e.get_callee_id().each |callee_id| { vfn(*callee_id, t); } vfn(e.id, t); visit::visit_expr(e, t, vt); }, visit_ty: |ty, t, vt| { match ty.node { ty_path(_, id) => vfn(id, t), _ => { /* fall through */ } } visit::visit_ty(ty, t, vt); }, visit_generics: |generics, t, vt| { visit_generics(generics, t); visit::visit_generics(generics, t, vt); }, visit_fn: |fk, d, a, b, id, t, vt| { vfn(id, t); match *fk { visit::fk_item_fn(_, generics, _, _) => { visit_generics(generics, t); } visit::fk_method(_, generics, m) => { vfn(m.self_id, t); visit_generics(generics, t); } visit::fk_anon(_) | visit::fk_fn_block => { } } for d.inputs.each |arg| { vfn(arg.id, t) } visit::visit_fn(fk, d, a, b, id, t, vt); }, visit_struct_field: |f, t, vt| { vfn(f.node.id, t); visit::visit_struct_field(f, t, vt); }, .. *visit::default_visitor() }) } pub fn visit_ids_for_inlined_item(item: &inlined_item, vfn: @fn(node_id)) { item.accept((), id_visitor(|id, ()| vfn(id))); } pub fn compute_id_range(visit_ids_fn: &fn(@fn(node_id))) -> id_range { let result = @mut id_range::max(); do visit_ids_fn |id| { result.add(id); } *result } pub fn compute_id_range_for_inlined_item(item: &inlined_item) -> id_range { compute_id_range(|f| visit_ids_for_inlined_item(item, f)) } pub fn is_item_impl(item: @ast::item) -> bool { match item.node { item_impl(*) => true, _ => false } } pub fn walk_pat(pat: @pat, it: &fn(@pat) -> bool) -> bool { if !it(pat) { return false; } match pat.node { pat_ident(_, _, Some(p)) => walk_pat(p, it), pat_struct(_, ref fields, _) => { fields.each(|f| walk_pat(f.pat, it)) } pat_enum(_, Some(ref s)) | pat_tup(ref s) => { s.each(|&p| walk_pat(p, it)) } pat_box(s) | pat_uniq(s) | pat_region(s) => { walk_pat(s, it) } pat_vec(ref before, ref slice, ref after) => { before.each(|&p| walk_pat(p, it)) && slice.each(|&p| walk_pat(p, it)) && after.each(|&p| walk_pat(p, it)) } pat_wild | pat_lit(_) | pat_range(_, _) | pat_ident(_, _, _) | pat_enum(_, _) => { true } } } pub trait EachViewItem { pub fn each_view_item(&self, f: @fn(@ast::view_item) -> bool) -> bool; } impl EachViewItem for ast::crate { fn each_view_item(&self, f: @fn(@ast::view_item) -> bool) -> bool { let broke = @mut false; let vtor: visit::vt<()> = visit::mk_simple_visitor(@visit::SimpleVisitor { visit_view_item: |vi| { *broke = f(vi); }, ..*visit::default_simple_visitor() }); visit::visit_crate(self, (), vtor); true } } pub fn view_path_id(p: @view_path) -> node_id { match p.node { view_path_simple(_, _, id) | view_path_glob(_, id) | view_path_list(_, _, id) => id } } /// Returns true if the given struct def is tuple-like; i.e. that its fields /// are unnamed. pub fn struct_def_is_tuple_like(struct_def: @ast::struct_def) -> bool { struct_def.ctor_id.is_some() } pub fn visibility_to_privacy(visibility: visibility) -> Privacy { match visibility { public => Public, inherited | private => Private } } pub fn variant_visibility_to_privacy(visibility: visibility, enclosing_is_public: bool) -> Privacy { if enclosing_is_public { match visibility { public | inherited => Public, private => Private } } else { visibility_to_privacy(visibility) } } #[deriving(Eq)] pub enum Privacy { Private, Public } // HYGIENE FUNCTIONS /// Construct an identifier with the given name and an empty context: pub fn new_ident(name: Name) -> ident { ident {name: name, ctxt: 0}} /// Extend a syntax context with a given mark pub fn new_mark (m:Mrk, tail:SyntaxContext,table:&mut SCTable) -> SyntaxContext { let key = (tail,m); // FIXME #5074 : can't use more natural style because we're missing // flow-sensitivity. Results in two lookups on a hash table hit. // also applies to new_rename, below. // let try_lookup = table.mark_memo.find(&key); match table.mark_memo.contains_key(&key) { false => { let new_idx = idx_push(&mut table.table,Mark(m,tail)); table.mark_memo.insert(key,new_idx); new_idx } true => { match table.mark_memo.find(&key) { None => fail!(~"internal error: key disappeared 2013042901"), Some(idxptr) => {*idxptr} } } } } /// Extend a syntax context with a given rename pub fn new_rename (id:ident, to:Name, tail:SyntaxContext, table: &mut SCTable) -> SyntaxContext { let key = (tail,id,to); // FIXME #5074 //let try_lookup = table.rename_memo.find(&key); match table.rename_memo.contains_key(&key) { false => { let new_idx = idx_push(&mut table.table,Rename(id,to,tail)); table.rename_memo.insert(key,new_idx); new_idx } true => { match table.rename_memo.find(&key) { None => fail!(~"internal error: key disappeared 2013042902"), Some(idxptr) => {*idxptr} } } } } /// Make a fresh syntax context table with EmptyCtxt in slot zero /// and IllegalCtxt in slot one. pub fn new_sctable() -> SCTable { SCTable { table: ~[EmptyCtxt,IllegalCtxt], mark_memo: HashMap::new(), rename_memo: HashMap::new() } } /// Add a value to the end of a vec, return its index fn idx_push(vec: &mut ~[T], val: T) -> uint { vec.push(val); vec.len() - 1 } /// Resolve a syntax object to a name, per MTWT. pub fn resolve (id : ident, table : &mut SCTable) -> Name { match table.table[id.ctxt] { EmptyCtxt => id.name, // ignore marks here: Mark(_,subctxt) => resolve (ident{name:id.name, ctxt: subctxt},table), // do the rename if necessary: Rename(ident{name,ctxt},toname,subctxt) => { // this could be cached or computed eagerly: let resolvedfrom = resolve(ident{name:name,ctxt:ctxt},table); let resolvedthis = resolve(ident{name:id.name,ctxt:subctxt},table); if ((resolvedthis == resolvedfrom) && (marksof (ctxt,resolvedthis,table) == marksof (subctxt,resolvedthis,table))) { toname } else { resolvedthis } } IllegalCtxt() => fail!(~"expected resolvable context, got IllegalCtxt") } } /// Compute the marks associated with a syntax context. // it's not clear to me whether it's better to use a [] mutable // vector or a cons-list for this. pub fn marksof(ctxt: SyntaxContext, stopname: Name, table: &SCTable) -> ~[Mrk] { let mut result = ~[]; let mut loopvar = ctxt; loop { match table.table[loopvar] { EmptyCtxt => {return result;}, Mark(mark,tl) => { xorPush(&mut result,mark); loopvar = tl; }, Rename(_,name,tl) => { // see MTWT for details on the purpose of the stopname. // short version: it prevents duplication of effort. if (name == stopname) { return result; } else { loopvar = tl; } } IllegalCtxt => fail!(~"expected resolvable context, got IllegalCtxt") } } } /// Push a name... unless it matches the one on top, in which /// case pop and discard (so two of the same marks cancel) pub fn xorPush(marks: &mut ~[uint], mark: uint) { if ((marks.len() > 0) && (getLast(marks) == mark)) { marks.pop(); } else { marks.push(mark); } } // get the last element of a mutable array. // FIXME #4903: , must be a separate procedure for now. pub fn getLast(arr: &~[Mrk]) -> uint { *arr.last() } #[cfg(test)] mod test { use ast::*; use super::*; use core::io; #[test] fn xorpush_test () { let mut s = ~[]; xorPush(&mut s,14); assert_eq!(copy s,~[14]); xorPush(&mut s,14); assert_eq!(copy s,~[]); xorPush(&mut s,14); assert_eq!(copy s,~[14]); xorPush(&mut s,15); assert_eq!(copy s,~[14,15]); xorPush (&mut s,16); assert_eq!(copy s,~[14,15,16]); xorPush (&mut s,16); assert_eq!(copy s,~[14,15]); xorPush (&mut s,15); assert_eq!(copy s,~[14]); } // convert a list of uints to an @~[ident] // (ignores the interner completely) fn uints_to_idents (uints: &~[uint]) -> @~[ident] { @uints.map(|u|{ ident {name:*u, ctxt: empty_ctxt} }) } fn id (u : uint, s: SyntaxContext) -> ident { ident{name:u, ctxt: s} } // because of the SCTable, I now need a tidy way of // creating syntax objects. Sigh. #[deriving(Eq)] enum TestSC { M(Mrk), R(ident,Name) } // unfold a vector of TestSC values into a SCTable, // returning the resulting index fn unfold_test_sc(tscs : ~[TestSC], tail: SyntaxContext, table : &mut SCTable) -> SyntaxContext { tscs.foldr(tail, |tsc : &TestSC,tail : SyntaxContext| {match *tsc { M(mrk) => new_mark(mrk,tail,table), R(ident,name) => new_rename(ident,name,tail,table)}}) } // gather a SyntaxContext back into a vector of TestSCs fn refold_test_sc(mut sc: SyntaxContext, table : &SCTable) -> ~[TestSC] { let mut result = ~[]; loop { match table.table[sc] { EmptyCtxt => {return result;}, Mark(mrk,tail) => { result.push(M(mrk)); sc = tail; loop; }, Rename(id,name,tail) => { result.push(R(id,name)); sc = tail; loop; } IllegalCtxt => fail!("expected resolvable context, got IllegalCtxt") } } } #[test] fn test_unfold_refold(){ let mut t = new_sctable(); let test_sc = ~[M(3),R(id(101,0),14),M(9)]; assert_eq!(unfold_test_sc(copy test_sc,empty_ctxt,&mut t),4); assert_eq!(t.table[2],Mark(9,0)); assert_eq!(t.table[3],Rename(id(101,0),14,2)); assert_eq!(t.table[4],Mark(3,3)); assert_eq!(refold_test_sc(4,&t),test_sc); } // extend a syntax context with a sequence of marks given // in a vector. v[0] will be the outermost mark. fn unfold_marks(mrks:~[Mrk],tail:SyntaxContext,table: &mut SCTable) -> SyntaxContext { mrks.foldr(tail, |mrk:&Mrk,tail:SyntaxContext| {new_mark(*mrk,tail,table)}) } #[test] fn unfold_marks_test() { let mut t = new_sctable(); assert_eq!(unfold_marks(~[3,7],empty_ctxt,&mut t),3); assert_eq!(t.table[2],Mark(7,0)); assert_eq!(t.table[3],Mark(3,2)); } #[test] fn test_marksof () { let stopname = 242; let name1 = 243; let mut t = new_sctable(); assert_eq!(marksof (empty_ctxt,stopname,&t),~[]); // FIXME #5074: ANF'd to dodge nested calls { let ans = unfold_marks(~[4,98],empty_ctxt,&mut t); assert_eq! (marksof (ans,stopname,&t),~[4,98]);} // does xoring work? { let ans = unfold_marks(~[5,5,16],empty_ctxt,&mut t); assert_eq! (marksof (ans,stopname,&t), ~[16]);} // does nested xoring work? { let ans = unfold_marks(~[5,10,10,5,16],empty_ctxt,&mut t); assert_eq! (marksof (ans, stopname,&t), ~[16]);} // rename where stop doesn't match: { let chain = ~[M(9), R(id(name1, new_mark (4, empty_ctxt,&mut t)), 100101102), M(14)]; let ans = unfold_test_sc(chain,empty_ctxt,&mut t); assert_eq! (marksof (ans, stopname, &t), ~[9,14]);} // rename where stop does match { let name1sc = new_mark(4, empty_ctxt, &mut t); let chain = ~[M(9), R(id(name1, name1sc), stopname), M(14)]; let ans = unfold_test_sc(chain,empty_ctxt,&mut t); assert_eq! (marksof (ans, stopname, &t), ~[9]); } } #[test] fn resolve_tests () { let a = 40; let mut t = new_sctable(); // - ctxt is MT assert_eq!(resolve(id(a,empty_ctxt),&mut t),a); // - simple ignored marks { let sc = unfold_marks(~[1,2,3],empty_ctxt,&mut t); assert_eq!(resolve(id(a,sc),&mut t),a);} // - orthogonal rename where names don't match { let sc = unfold_test_sc(~[R(id(50,empty_ctxt),51),M(12)],empty_ctxt,&mut t); assert_eq!(resolve(id(a,sc),&mut t),a);} // - rename where names do match, but marks don't { let sc1 = new_mark(1,empty_ctxt,&mut t); let sc = unfold_test_sc(~[R(id(a,sc1),50), M(1), M(2)], empty_ctxt,&mut t); assert_eq!(resolve(id(a,sc),&mut t), a);} // - rename where names and marks match { let sc1 = unfold_test_sc(~[M(1),M(2)],empty_ctxt,&mut t); let sc = unfold_test_sc(~[R(id(a,sc1),50),M(1),M(2)],empty_ctxt,&mut t); assert_eq!(resolve(id(a,sc),&mut t), 50); } // - rename where names and marks match by literal sharing { let sc1 = unfold_test_sc(~[M(1),M(2)],empty_ctxt,&mut t); let sc = unfold_test_sc(~[R(id(a,sc1),50)],sc1,&mut t); assert_eq!(resolve(id(a,sc),&mut t), 50); } // - two renames of the same var.. can only happen if you use // local-expand to prevent the inner binding from being renamed // during the rename-pass caused by the first: io::println("about to run bad test"); { let sc = unfold_test_sc(~[R(id(a,empty_ctxt),50), R(id(a,empty_ctxt),51)], empty_ctxt,&mut t); assert_eq!(resolve(id(a,sc),&mut t), 51); } // the simplest double-rename: { let a_to_a50 = new_rename(id(a,empty_ctxt),50,empty_ctxt,&mut t); let a50_to_a51 = new_rename(id(a,a_to_a50),51,a_to_a50,&mut t); assert_eq!(resolve(id(a,a50_to_a51),&mut t),51); // mark on the outside doesn't stop rename: let sc = new_mark(9,a50_to_a51,&mut t); assert_eq!(resolve(id(a,sc),&mut t),51); // but mark on the inside does: let a50_to_a51_b = unfold_test_sc(~[R(id(a,a_to_a50),51), M(9)], a_to_a50, &mut t); assert_eq!(resolve(id(a,a50_to_a51_b),&mut t),50);} } #[test] fn hashing_tests () { let mut t = new_sctable(); assert_eq!(new_mark(12,empty_ctxt,&mut t),2); assert_eq!(new_mark(13,empty_ctxt,&mut t),3); // using the same one again should result in the same index: assert_eq!(new_mark(12,empty_ctxt,&mut t),2); // I'm assuming that the rename table will behave the same.... } }