// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Operations and constants for 32-bits floats (`f32` type) #![allow(missing_doc)] #![allow(unsigned_negate)] use prelude::*; use cast; use from_str::FromStr; use libc::c_int; use num::{FPCategory, FPNaN, FPInfinite , FPZero, FPSubnormal, FPNormal}; use num::strconv; use num; use intrinsics; pub use core::f32::{RADIX, MANTISSA_DIGITS, DIGITS, EPSILON, MIN_VALUE}; pub use core::f32::{MIN_POS_VALUE, MAX_VALUE, MIN_EXP, MAX_EXP, MIN_10_EXP}; pub use core::f32::{MAX_10_EXP, NAN, INFINITY, NEG_INFINITY}; pub use core::f32::consts; #[allow(dead_code)] mod cmath { use libc::{c_float, c_int}; #[link_name = "m"] extern { pub fn acosf(n: c_float) -> c_float; pub fn asinf(n: c_float) -> c_float; pub fn atanf(n: c_float) -> c_float; pub fn atan2f(a: c_float, b: c_float) -> c_float; pub fn cbrtf(n: c_float) -> c_float; pub fn coshf(n: c_float) -> c_float; pub fn erff(n: c_float) -> c_float; pub fn erfcf(n: c_float) -> c_float; pub fn expm1f(n: c_float) -> c_float; pub fn fdimf(a: c_float, b: c_float) -> c_float; pub fn frexpf(n: c_float, value: &mut c_int) -> c_float; pub fn fmaxf(a: c_float, b: c_float) -> c_float; pub fn fminf(a: c_float, b: c_float) -> c_float; pub fn fmodf(a: c_float, b: c_float) -> c_float; pub fn nextafterf(x: c_float, y: c_float) -> c_float; pub fn hypotf(x: c_float, y: c_float) -> c_float; pub fn ldexpf(x: c_float, n: c_int) -> c_float; pub fn logbf(n: c_float) -> c_float; pub fn log1pf(n: c_float) -> c_float; pub fn ilogbf(n: c_float) -> c_int; pub fn modff(n: c_float, iptr: &mut c_float) -> c_float; pub fn sinhf(n: c_float) -> c_float; pub fn tanf(n: c_float) -> c_float; pub fn tanhf(n: c_float) -> c_float; pub fn tgammaf(n: c_float) -> c_float; #[cfg(unix)] pub fn lgammaf_r(n: c_float, sign: &mut c_int) -> c_float; #[cfg(windows)] #[link_name="__lgammaf_r"] pub fn lgammaf_r(n: c_float, sign: &mut c_int) -> c_float; } } impl Float for f32 { #[inline] fn nan() -> f32 { NAN } #[inline] fn infinity() -> f32 { INFINITY } #[inline] fn neg_infinity() -> f32 { NEG_INFINITY } #[inline] fn neg_zero() -> f32 { -0.0 } /// Returns `true` if the number is NaN #[inline] fn is_nan(self) -> bool { self != self } /// Returns `true` if the number is infinite #[inline] fn is_infinite(self) -> bool { self == Float::infinity() || self == Float::neg_infinity() } /// Returns `true` if the number is neither infinite or NaN #[inline] fn is_finite(self) -> bool { !(self.is_nan() || self.is_infinite()) } /// Returns `true` if the number is neither zero, infinite, subnormal or NaN #[inline] fn is_normal(self) -> bool { self.classify() == FPNormal } /// Returns the floating point category of the number. If only one property /// is going to be tested, it is generally faster to use the specific /// predicate instead. fn classify(self) -> FPCategory { static EXP_MASK: u32 = 0x7f800000; static MAN_MASK: u32 = 0x007fffff; let bits: u32 = unsafe { cast::transmute(self) }; match (bits & MAN_MASK, bits & EXP_MASK) { (0, 0) => FPZero, (_, 0) => FPSubnormal, (0, EXP_MASK) => FPInfinite, (_, EXP_MASK) => FPNaN, _ => FPNormal, } } #[inline] fn mantissa_digits(_: Option) -> uint { MANTISSA_DIGITS } #[inline] fn digits(_: Option) -> uint { DIGITS } #[inline] fn epsilon() -> f32 { EPSILON } #[inline] fn min_exp(_: Option) -> int { MIN_EXP } #[inline] fn max_exp(_: Option) -> int { MAX_EXP } #[inline] fn min_10_exp(_: Option) -> int { MIN_10_EXP } #[inline] fn max_10_exp(_: Option) -> int { MAX_10_EXP } #[inline] fn min_pos_value(_: Option) -> f32 { MIN_POS_VALUE } /// Constructs a floating point number by multiplying `x` by 2 raised to the /// power of `exp` #[inline] fn ldexp(x: f32, exp: int) -> f32 { unsafe { cmath::ldexpf(x, exp as c_int) } } /// Breaks the number into a normalized fraction and a base-2 exponent, /// satisfying: /// /// - `self = x * pow(2, exp)` /// - `0.5 <= abs(x) < 1.0` #[inline] fn frexp(self) -> (f32, int) { unsafe { let mut exp = 0; let x = cmath::frexpf(self, &mut exp); (x, exp as int) } } /// Returns the mantissa, exponent and sign as integers. fn integer_decode(self) -> (u64, i16, i8) { let bits: u32 = unsafe { cast::transmute(self) }; let sign: i8 = if bits >> 31 == 0 { 1 } else { -1 }; let mut exponent: i16 = ((bits >> 23) & 0xff) as i16; let mantissa = if exponent == 0 { (bits & 0x7fffff) << 1 } else { (bits & 0x7fffff) | 0x800000 }; // Exponent bias + mantissa shift exponent -= 127 + 23; (mantissa as u64, exponent, sign) } /// Returns the next representable floating-point value in the direction of /// `other`. #[inline] fn next_after(self, other: f32) -> f32 { unsafe { cmath::nextafterf(self, other) } } /// Round half-way cases toward `NEG_INFINITY` #[inline] fn floor(self) -> f32 { unsafe { intrinsics::floorf32(self) } } /// Round half-way cases toward `INFINITY` #[inline] fn ceil(self) -> f32 { unsafe { intrinsics::ceilf32(self) } } /// Round half-way cases away from `0.0` #[inline] fn round(self) -> f32 { unsafe { intrinsics::roundf32(self) } } /// The integer part of the number (rounds towards `0.0`) #[inline] fn trunc(self) -> f32 { unsafe { intrinsics::truncf32(self) } } /// The fractional part of the number, satisfying: /// /// ```rust /// let x = 1.65f32; /// assert!(x == x.trunc() + x.fract()) /// ``` #[inline] fn fract(self) -> f32 { self - self.trunc() } #[inline] fn max(self, other: f32) -> f32 { unsafe { cmath::fmaxf(self, other) } } #[inline] fn min(self, other: f32) -> f32 { unsafe { cmath::fminf(self, other) } } /// Fused multiply-add. Computes `(self * a) + b` with only one rounding /// error. This produces a more accurate result with better performance than /// a separate multiplication operation followed by an add. #[inline] fn mul_add(self, a: f32, b: f32) -> f32 { unsafe { intrinsics::fmaf32(self, a, b) } } /// The reciprocal (multiplicative inverse) of the number #[inline] fn recip(self) -> f32 { 1.0 / self } fn powi(self, n: i32) -> f32 { unsafe { intrinsics::powif32(self, n) } } #[inline] fn powf(self, n: f32) -> f32 { unsafe { intrinsics::powf32(self, n) } } /// sqrt(2.0) #[inline] fn sqrt2() -> f32 { consts::SQRT2 } /// 1.0 / sqrt(2.0) #[inline] fn frac_1_sqrt2() -> f32 { consts::FRAC_1_SQRT2 } #[inline] fn sqrt(self) -> f32 { unsafe { intrinsics::sqrtf32(self) } } #[inline] fn rsqrt(self) -> f32 { self.sqrt().recip() } #[inline] fn cbrt(self) -> f32 { unsafe { cmath::cbrtf(self) } } #[inline] fn hypot(self, other: f32) -> f32 { unsafe { cmath::hypotf(self, other) } } /// Archimedes' constant #[inline] fn pi() -> f32 { consts::PI } /// 2.0 * pi #[inline] fn two_pi() -> f32 { consts::PI_2 } /// pi / 2.0 #[inline] fn frac_pi_2() -> f32 { consts::FRAC_PI_2 } /// pi / 3.0 #[inline] fn frac_pi_3() -> f32 { consts::FRAC_PI_3 } /// pi / 4.0 #[inline] fn frac_pi_4() -> f32 { consts::FRAC_PI_4 } /// pi / 6.0 #[inline] fn frac_pi_6() -> f32 { consts::FRAC_PI_6 } /// pi / 8.0 #[inline] fn frac_pi_8() -> f32 { consts::FRAC_PI_8 } /// 1 .0/ pi #[inline] fn frac_1_pi() -> f32 { consts::FRAC_1_PI } /// 2.0 / pi #[inline] fn frac_2_pi() -> f32 { consts::FRAC_2_PI } /// 2.0 / sqrt(pi) #[inline] fn frac_2_sqrtpi() -> f32 { consts::FRAC_2_SQRTPI } #[inline] fn sin(self) -> f32 { unsafe { intrinsics::sinf32(self) } } #[inline] fn cos(self) -> f32 { unsafe { intrinsics::cosf32(self) } } #[inline] fn tan(self) -> f32 { unsafe { cmath::tanf(self) } } #[inline] fn asin(self) -> f32 { unsafe { cmath::asinf(self) } } #[inline] fn acos(self) -> f32 { unsafe { cmath::acosf(self) } } #[inline] fn atan(self) -> f32 { unsafe { cmath::atanf(self) } } #[inline] fn atan2(self, other: f32) -> f32 { unsafe { cmath::atan2f(self, other) } } /// Simultaneously computes the sine and cosine of the number #[inline] fn sin_cos(self) -> (f32, f32) { (self.sin(), self.cos()) } /// Euler's number #[inline] fn e() -> f32 { consts::E } /// log2(e) #[inline] fn log2_e() -> f32 { consts::LOG2_E } /// log10(e) #[inline] fn log10_e() -> f32 { consts::LOG10_E } /// ln(2.0) #[inline] fn ln_2() -> f32 { consts::LN_2 } /// ln(10.0) #[inline] fn ln_10() -> f32 { consts::LN_10 } /// Returns the exponential of the number #[inline] fn exp(self) -> f32 { unsafe { intrinsics::expf32(self) } } /// Returns 2 raised to the power of the number #[inline] fn exp2(self) -> f32 { unsafe { intrinsics::exp2f32(self) } } /// Returns the exponential of the number, minus `1`, in a way that is /// accurate even if the number is close to zero #[inline] fn exp_m1(self) -> f32 { unsafe { cmath::expm1f(self) } } /// Returns the natural logarithm of the number #[inline] fn ln(self) -> f32 { unsafe { intrinsics::logf32(self) } } /// Returns the logarithm of the number with respect to an arbitrary base #[inline] fn log(self, base: f32) -> f32 { self.ln() / base.ln() } /// Returns the base 2 logarithm of the number #[inline] fn log2(self) -> f32 { unsafe { intrinsics::log2f32(self) } } /// Returns the base 10 logarithm of the number #[inline] fn log10(self) -> f32 { unsafe { intrinsics::log10f32(self) } } /// Returns the natural logarithm of the number plus `1` (`ln(1+n)`) more /// accurately than if the operations were performed separately #[inline] fn ln_1p(self) -> f32 { unsafe { cmath::log1pf(self) } } #[inline] fn sinh(self) -> f32 { unsafe { cmath::sinhf(self) } } #[inline] fn cosh(self) -> f32 { unsafe { cmath::coshf(self) } } #[inline] fn tanh(self) -> f32 { unsafe { cmath::tanhf(self) } } /// Inverse hyperbolic sine /// /// # Returns /// /// - on success, the inverse hyperbolic sine of `self` will be returned /// - `self` if `self` is `0.0`, `-0.0`, `INFINITY`, or `NEG_INFINITY` /// - `NAN` if `self` is `NAN` #[inline] fn asinh(self) -> f32 { match self { NEG_INFINITY => NEG_INFINITY, x => (x + ((x * x) + 1.0).sqrt()).ln(), } } /// Inverse hyperbolic cosine /// /// # Returns /// /// - on success, the inverse hyperbolic cosine of `self` will be returned /// - `INFINITY` if `self` is `INFINITY` /// - `NAN` if `self` is `NAN` or `self < 1.0` (including `NEG_INFINITY`) #[inline] fn acosh(self) -> f32 { match self { x if x < 1.0 => Float::nan(), x => (x + ((x * x) - 1.0).sqrt()).ln(), } } /// Inverse hyperbolic tangent /// /// # Returns /// /// - on success, the inverse hyperbolic tangent of `self` will be returned /// - `self` if `self` is `0.0` or `-0.0` /// - `INFINITY` if `self` is `1.0` /// - `NEG_INFINITY` if `self` is `-1.0` /// - `NAN` if the `self` is `NAN` or outside the domain of `-1.0 <= self <= 1.0` /// (including `INFINITY` and `NEG_INFINITY`) #[inline] fn atanh(self) -> f32 { 0.5 * ((2.0 * self) / (1.0 - self)).ln_1p() } /// Converts to degrees, assuming the number is in radians #[inline] fn to_degrees(self) -> f32 { self * (180.0f32 / Float::pi()) } /// Converts to radians, assuming the number is in degrees #[inline] fn to_radians(self) -> f32 { let value: f32 = Float::pi(); self * (value / 180.0f32) } } // // Section: String Conversions // /// Converts a float to a string /// /// # Arguments /// /// * num - The float value #[inline] pub fn to_str(num: f32) -> ~str { let (r, _) = strconv::float_to_str_common( num, 10u, true, strconv::SignNeg, strconv::DigAll, strconv::ExpNone, false); r } /// Converts a float to a string in hexadecimal format /// /// # Arguments /// /// * num - The float value #[inline] pub fn to_str_hex(num: f32) -> ~str { let (r, _) = strconv::float_to_str_common( num, 16u, true, strconv::SignNeg, strconv::DigAll, strconv::ExpNone, false); r } /// Converts a float to a string in a given radix, and a flag indicating /// whether it's a special value /// /// # Arguments /// /// * num - The float value /// * radix - The base to use #[inline] pub fn to_str_radix_special(num: f32, rdx: uint) -> (~str, bool) { strconv::float_to_str_common(num, rdx, true, strconv::SignNeg, strconv::DigAll, strconv::ExpNone, false) } /// Converts a float to a string with exactly the number of /// provided significant digits /// /// # Arguments /// /// * num - The float value /// * digits - The number of significant digits #[inline] pub fn to_str_exact(num: f32, dig: uint) -> ~str { let (r, _) = strconv::float_to_str_common( num, 10u, true, strconv::SignNeg, strconv::DigExact(dig), strconv::ExpNone, false); r } /// Converts a float to a string with a maximum number of /// significant digits /// /// # Arguments /// /// * num - The float value /// * digits - The number of significant digits #[inline] pub fn to_str_digits(num: f32, dig: uint) -> ~str { let (r, _) = strconv::float_to_str_common( num, 10u, true, strconv::SignNeg, strconv::DigMax(dig), strconv::ExpNone, false); r } /// Converts a float to a string using the exponential notation with exactly the number of /// provided digits after the decimal point in the significand /// /// # Arguments /// /// * num - The float value /// * digits - The number of digits after the decimal point /// * upper - Use `E` instead of `e` for the exponent sign #[inline] pub fn to_str_exp_exact(num: f32, dig: uint, upper: bool) -> ~str { let (r, _) = strconv::float_to_str_common( num, 10u, true, strconv::SignNeg, strconv::DigExact(dig), strconv::ExpDec, upper); r } /// Converts a float to a string using the exponential notation with the maximum number of /// digits after the decimal point in the significand /// /// # Arguments /// /// * num - The float value /// * digits - The number of digits after the decimal point /// * upper - Use `E` instead of `e` for the exponent sign #[inline] pub fn to_str_exp_digits(num: f32, dig: uint, upper: bool) -> ~str { let (r, _) = strconv::float_to_str_common( num, 10u, true, strconv::SignNeg, strconv::DigMax(dig), strconv::ExpDec, upper); r } impl num::ToStrRadix for f32 { /// Converts a float to a string in a given radix /// /// # Arguments /// /// * num - The float value /// * radix - The base to use /// /// # Failure /// /// Fails if called on a special value like `inf`, `-inf` or `NaN` due to /// possible misinterpretation of the result at higher bases. If those values /// are expected, use `to_str_radix_special()` instead. #[inline] fn to_str_radix(&self, rdx: uint) -> ~str { let (r, special) = strconv::float_to_str_common( *self, rdx, true, strconv::SignNeg, strconv::DigAll, strconv::ExpNone, false); if special { fail!("number has a special value, \ try to_str_radix_special() if those are expected") } r } } /// Convert a string in base 16 to a float. /// Accepts an optional binary exponent. /// /// This function accepts strings such as /// /// * 'a4.fe' /// * '+a4.fe', equivalent to 'a4.fe' /// * '-a4.fe' /// * '2b.aP128', or equivalently, '2b.ap128' /// * '2b.aP-128' /// * '.' (understood as 0) /// * 'c.' /// * '.c', or, equivalently, '0.c' /// * '+inf', 'inf', '-inf', 'NaN' /// /// Leading and trailing whitespace represent an error. /// /// # Arguments /// /// * num - A string /// /// # Return value /// /// `None` if the string did not represent a valid number. Otherwise, /// `Some(n)` where `n` is the floating-point number represented by `[num]`. #[inline] pub fn from_str_hex(num: &str) -> Option { strconv::from_str_common(num, 16u, true, true, true, strconv::ExpBin, false, false) } impl FromStr for f32 { /// Convert a string in base 10 to a float. /// Accepts an optional decimal exponent. /// /// This function accepts strings such as /// /// * '3.14' /// * '+3.14', equivalent to '3.14' /// * '-3.14' /// * '2.5E10', or equivalently, '2.5e10' /// * '2.5E-10' /// * '.' (understood as 0) /// * '5.' /// * '.5', or, equivalently, '0.5' /// * '+inf', 'inf', '-inf', 'NaN' /// /// Leading and trailing whitespace represent an error. /// /// # Arguments /// /// * num - A string /// /// # Return value /// /// `None` if the string did not represent a valid number. Otherwise, /// `Some(n)` where `n` is the floating-point number represented by `num`. #[inline] fn from_str(val: &str) -> Option { strconv::from_str_common(val, 10u, true, true, true, strconv::ExpDec, false, false) } } impl num::FromStrRadix for f32 { /// Convert a string in a given base to a float. /// /// Due to possible conflicts, this function does **not** accept /// the special values `inf`, `-inf`, `+inf` and `NaN`, **nor** /// does it recognize exponents of any kind. /// /// Leading and trailing whitespace represent an error. /// /// # Arguments /// /// * num - A string /// * radix - The base to use. Must lie in the range [2 .. 36] /// /// # Return value /// /// `None` if the string did not represent a valid number. Otherwise, /// `Some(n)` where `n` is the floating-point number represented by `num`. #[inline] fn from_str_radix(val: &str, rdx: uint) -> Option { strconv::from_str_common(val, rdx, true, true, false, strconv::ExpNone, false, false) } } #[cfg(test)] mod tests { use f32::*; use num::*; use num; #[test] fn test_min_nan() { assert_eq!(NAN.min(2.0), 2.0); assert_eq!(2.0f32.min(NAN), 2.0); } #[test] fn test_max_nan() { assert_eq!(NAN.max(2.0), 2.0); assert_eq!(2.0f32.max(NAN), 2.0); } #[test] fn test_num() { num::test_num(10f32, 2f32); } #[test] fn test_floor() { assert_approx_eq!(1.0f32.floor(), 1.0f32); assert_approx_eq!(1.3f32.floor(), 1.0f32); assert_approx_eq!(1.5f32.floor(), 1.0f32); assert_approx_eq!(1.7f32.floor(), 1.0f32); assert_approx_eq!(0.0f32.floor(), 0.0f32); assert_approx_eq!((-0.0f32).floor(), -0.0f32); assert_approx_eq!((-1.0f32).floor(), -1.0f32); assert_approx_eq!((-1.3f32).floor(), -2.0f32); assert_approx_eq!((-1.5f32).floor(), -2.0f32); assert_approx_eq!((-1.7f32).floor(), -2.0f32); } #[test] fn test_ceil() { assert_approx_eq!(1.0f32.ceil(), 1.0f32); assert_approx_eq!(1.3f32.ceil(), 2.0f32); assert_approx_eq!(1.5f32.ceil(), 2.0f32); assert_approx_eq!(1.7f32.ceil(), 2.0f32); assert_approx_eq!(0.0f32.ceil(), 0.0f32); assert_approx_eq!((-0.0f32).ceil(), -0.0f32); assert_approx_eq!((-1.0f32).ceil(), -1.0f32); assert_approx_eq!((-1.3f32).ceil(), -1.0f32); assert_approx_eq!((-1.5f32).ceil(), -1.0f32); assert_approx_eq!((-1.7f32).ceil(), -1.0f32); } #[test] fn test_round() { assert_approx_eq!(1.0f32.round(), 1.0f32); assert_approx_eq!(1.3f32.round(), 1.0f32); assert_approx_eq!(1.5f32.round(), 2.0f32); assert_approx_eq!(1.7f32.round(), 2.0f32); assert_approx_eq!(0.0f32.round(), 0.0f32); assert_approx_eq!((-0.0f32).round(), -0.0f32); assert_approx_eq!((-1.0f32).round(), -1.0f32); assert_approx_eq!((-1.3f32).round(), -1.0f32); assert_approx_eq!((-1.5f32).round(), -2.0f32); assert_approx_eq!((-1.7f32).round(), -2.0f32); } #[test] fn test_trunc() { assert_approx_eq!(1.0f32.trunc(), 1.0f32); assert_approx_eq!(1.3f32.trunc(), 1.0f32); assert_approx_eq!(1.5f32.trunc(), 1.0f32); assert_approx_eq!(1.7f32.trunc(), 1.0f32); assert_approx_eq!(0.0f32.trunc(), 0.0f32); assert_approx_eq!((-0.0f32).trunc(), -0.0f32); assert_approx_eq!((-1.0f32).trunc(), -1.0f32); assert_approx_eq!((-1.3f32).trunc(), -1.0f32); assert_approx_eq!((-1.5f32).trunc(), -1.0f32); assert_approx_eq!((-1.7f32).trunc(), -1.0f32); } #[test] fn test_fract() { assert_approx_eq!(1.0f32.fract(), 0.0f32); assert_approx_eq!(1.3f32.fract(), 0.3f32); assert_approx_eq!(1.5f32.fract(), 0.5f32); assert_approx_eq!(1.7f32.fract(), 0.7f32); assert_approx_eq!(0.0f32.fract(), 0.0f32); assert_approx_eq!((-0.0f32).fract(), -0.0f32); assert_approx_eq!((-1.0f32).fract(), -0.0f32); assert_approx_eq!((-1.3f32).fract(), -0.3f32); assert_approx_eq!((-1.5f32).fract(), -0.5f32); assert_approx_eq!((-1.7f32).fract(), -0.7f32); } #[test] fn test_asinh() { assert_eq!(0.0f32.asinh(), 0.0f32); assert_eq!((-0.0f32).asinh(), -0.0f32); let inf: f32 = Float::infinity(); let neg_inf: f32 = Float::neg_infinity(); let nan: f32 = Float::nan(); assert_eq!(inf.asinh(), inf); assert_eq!(neg_inf.asinh(), neg_inf); assert!(nan.asinh().is_nan()); assert_approx_eq!(2.0f32.asinh(), 1.443635475178810342493276740273105f32); assert_approx_eq!((-2.0f32).asinh(), -1.443635475178810342493276740273105f32); } #[test] fn test_acosh() { assert_eq!(1.0f32.acosh(), 0.0f32); assert!(0.999f32.acosh().is_nan()); let inf: f32 = Float::infinity(); let neg_inf: f32 = Float::neg_infinity(); let nan: f32 = Float::nan(); assert_eq!(inf.acosh(), inf); assert!(neg_inf.acosh().is_nan()); assert!(nan.acosh().is_nan()); assert_approx_eq!(2.0f32.acosh(), 1.31695789692481670862504634730796844f32); assert_approx_eq!(3.0f32.acosh(), 1.76274717403908605046521864995958461f32); } #[test] fn test_atanh() { assert_eq!(0.0f32.atanh(), 0.0f32); assert_eq!((-0.0f32).atanh(), -0.0f32); let inf32: f32 = Float::infinity(); let neg_inf32: f32 = Float::neg_infinity(); assert_eq!(1.0f32.atanh(), inf32); assert_eq!((-1.0f32).atanh(), neg_inf32); assert!(2f64.atanh().atanh().is_nan()); assert!((-2f64).atanh().atanh().is_nan()); let inf64: f32 = Float::infinity(); let neg_inf64: f32 = Float::neg_infinity(); let nan32: f32 = Float::nan(); assert!(inf64.atanh().is_nan()); assert!(neg_inf64.atanh().is_nan()); assert!(nan32.atanh().is_nan()); assert_approx_eq!(0.5f32.atanh(), 0.54930614433405484569762261846126285f32); assert_approx_eq!((-0.5f32).atanh(), -0.54930614433405484569762261846126285f32); } #[test] fn test_real_consts() { let pi: f32 = Float::pi(); let two_pi: f32 = Float::two_pi(); let frac_pi_2: f32 = Float::frac_pi_2(); let frac_pi_3: f32 = Float::frac_pi_3(); let frac_pi_4: f32 = Float::frac_pi_4(); let frac_pi_6: f32 = Float::frac_pi_6(); let frac_pi_8: f32 = Float::frac_pi_8(); let frac_1_pi: f32 = Float::frac_1_pi(); let frac_2_pi: f32 = Float::frac_2_pi(); let frac_2_sqrtpi: f32 = Float::frac_2_sqrtpi(); let sqrt2: f32 = Float::sqrt2(); let frac_1_sqrt2: f32 = Float::frac_1_sqrt2(); let e: f32 = Float::e(); let log2_e: f32 = Float::log2_e(); let log10_e: f32 = Float::log10_e(); let ln_2: f32 = Float::ln_2(); let ln_10: f32 = Float::ln_10(); assert_approx_eq!(two_pi, 2f32 * pi); assert_approx_eq!(frac_pi_2, pi / 2f32); assert_approx_eq!(frac_pi_3, pi / 3f32); assert_approx_eq!(frac_pi_4, pi / 4f32); assert_approx_eq!(frac_pi_6, pi / 6f32); assert_approx_eq!(frac_pi_8, pi / 8f32); assert_approx_eq!(frac_1_pi, 1f32 / pi); assert_approx_eq!(frac_2_pi, 2f32 / pi); assert_approx_eq!(frac_2_sqrtpi, 2f32 / pi.sqrt()); assert_approx_eq!(sqrt2, 2f32.sqrt()); assert_approx_eq!(frac_1_sqrt2, 1f32 / 2f32.sqrt()); assert_approx_eq!(log2_e, e.log2()); assert_approx_eq!(log10_e, e.log10()); assert_approx_eq!(ln_2, 2f32.ln()); assert_approx_eq!(ln_10, 10f32.ln()); } #[test] pub fn test_abs() { assert_eq!(INFINITY.abs(), INFINITY); assert_eq!(1f32.abs(), 1f32); assert_eq!(0f32.abs(), 0f32); assert_eq!((-0f32).abs(), 0f32); assert_eq!((-1f32).abs(), 1f32); assert_eq!(NEG_INFINITY.abs(), INFINITY); assert_eq!((1f32/NEG_INFINITY).abs(), 0f32); assert!(NAN.abs().is_nan()); } #[test] fn test_abs_sub() { assert_eq!((-1f32).abs_sub(&1f32), 0f32); assert_eq!(1f32.abs_sub(&1f32), 0f32); assert_eq!(1f32.abs_sub(&0f32), 1f32); assert_eq!(1f32.abs_sub(&-1f32), 2f32); assert_eq!(NEG_INFINITY.abs_sub(&0f32), 0f32); assert_eq!(INFINITY.abs_sub(&1f32), INFINITY); assert_eq!(0f32.abs_sub(&NEG_INFINITY), INFINITY); assert_eq!(0f32.abs_sub(&INFINITY), 0f32); } #[test] fn test_abs_sub_nowin() { assert!(NAN.abs_sub(&-1f32).is_nan()); assert!(1f32.abs_sub(&NAN).is_nan()); } #[test] fn test_signum() { assert_eq!(INFINITY.signum(), 1f32); assert_eq!(1f32.signum(), 1f32); assert_eq!(0f32.signum(), 1f32); assert_eq!((-0f32).signum(), -1f32); assert_eq!((-1f32).signum(), -1f32); assert_eq!(NEG_INFINITY.signum(), -1f32); assert_eq!((1f32/NEG_INFINITY).signum(), -1f32); assert!(NAN.signum().is_nan()); } #[test] fn test_is_positive() { assert!(INFINITY.is_positive()); assert!(1f32.is_positive()); assert!(0f32.is_positive()); assert!(!(-0f32).is_positive()); assert!(!(-1f32).is_positive()); assert!(!NEG_INFINITY.is_positive()); assert!(!(1f32/NEG_INFINITY).is_positive()); assert!(!NAN.is_positive()); } #[test] fn test_is_negative() { assert!(!INFINITY.is_negative()); assert!(!1f32.is_negative()); assert!(!0f32.is_negative()); assert!((-0f32).is_negative()); assert!((-1f32).is_negative()); assert!(NEG_INFINITY.is_negative()); assert!((1f32/NEG_INFINITY).is_negative()); assert!(!NAN.is_negative()); } #[test] fn test_is_normal() { let nan: f32 = Float::nan(); let inf: f32 = Float::infinity(); let neg_inf: f32 = Float::neg_infinity(); let zero: f32 = Zero::zero(); let neg_zero: f32 = Float::neg_zero(); assert!(!nan.is_normal()); assert!(!inf.is_normal()); assert!(!neg_inf.is_normal()); assert!(!zero.is_normal()); assert!(!neg_zero.is_normal()); assert!(1f32.is_normal()); assert!(1e-37f32.is_normal()); assert!(!1e-38f32.is_normal()); } #[test] fn test_classify() { let nan: f32 = Float::nan(); let inf: f32 = Float::infinity(); let neg_inf: f32 = Float::neg_infinity(); let zero: f32 = Zero::zero(); let neg_zero: f32 = Float::neg_zero(); assert_eq!(nan.classify(), FPNaN); assert_eq!(inf.classify(), FPInfinite); assert_eq!(neg_inf.classify(), FPInfinite); assert_eq!(zero.classify(), FPZero); assert_eq!(neg_zero.classify(), FPZero); assert_eq!(1f32.classify(), FPNormal); assert_eq!(1e-37f32.classify(), FPNormal); assert_eq!(1e-38f32.classify(), FPSubnormal); } #[test] fn test_ldexp() { // We have to use from_str until base-2 exponents // are supported in floating-point literals let f1: f32 = from_str_hex("1p-123").unwrap(); let f2: f32 = from_str_hex("1p-111").unwrap(); assert_eq!(Float::ldexp(1f32, -123), f1); assert_eq!(Float::ldexp(1f32, -111), f2); assert_eq!(Float::ldexp(0f32, -123), 0f32); assert_eq!(Float::ldexp(-0f32, -123), -0f32); let inf: f32 = Float::infinity(); let neg_inf: f32 = Float::neg_infinity(); let nan: f32 = Float::nan(); assert_eq!(Float::ldexp(inf, -123), inf); assert_eq!(Float::ldexp(neg_inf, -123), neg_inf); assert!(Float::ldexp(nan, -123).is_nan()); } #[test] fn test_frexp() { // We have to use from_str until base-2 exponents // are supported in floating-point literals let f1: f32 = from_str_hex("1p-123").unwrap(); let f2: f32 = from_str_hex("1p-111").unwrap(); let (x1, exp1) = f1.frexp(); let (x2, exp2) = f2.frexp(); assert_eq!((x1, exp1), (0.5f32, -122)); assert_eq!((x2, exp2), (0.5f32, -110)); assert_eq!(Float::ldexp(x1, exp1), f1); assert_eq!(Float::ldexp(x2, exp2), f2); assert_eq!(0f32.frexp(), (0f32, 0)); assert_eq!((-0f32).frexp(), (-0f32, 0)); } #[test] #[ignore(cfg(windows))] // FIXME #8755 fn test_frexp_nowin() { let inf: f32 = Float::infinity(); let neg_inf: f32 = Float::neg_infinity(); let nan: f32 = Float::nan(); assert_eq!(match inf.frexp() { (x, _) => x }, inf) assert_eq!(match neg_inf.frexp() { (x, _) => x }, neg_inf) assert!(match nan.frexp() { (x, _) => x.is_nan() }) } #[test] fn test_integer_decode() { assert_eq!(3.14159265359f32.integer_decode(), (13176795u64, -22i16, 1i8)); assert_eq!((-8573.5918555f32).integer_decode(), (8779358u64, -10i16, -1i8)); assert_eq!(2f32.powf(100.0).integer_decode(), (8388608u64, 77i16, 1i8)); assert_eq!(0f32.integer_decode(), (0u64, -150i16, 1i8)); assert_eq!((-0f32).integer_decode(), (0u64, -150i16, -1i8)); assert_eq!(INFINITY.integer_decode(), (8388608u64, 105i16, 1i8)); assert_eq!(NEG_INFINITY.integer_decode(), (8388608u64, 105i16, -1i8)); assert_eq!(NAN.integer_decode(), (12582912u64, 105i16, 1i8)); } }