//! Checks for uses of const which the type is not `Freeze` (`Cell`-free). //! //! This lint is **deny** by default. use std::ptr; use rustc_hir::def::{DefKind, Res}; use rustc_hir::{Expr, ExprKind, ImplItem, ImplItemKind, Item, ItemKind, Node, TraitItem, TraitItemKind, UnOp}; use rustc_infer::traits::specialization_graph; use rustc_lint::{LateContext, LateLintPass, Lint}; use rustc_middle::ty::adjustment::Adjust; use rustc_middle::ty::{AssocKind, Ty}; use rustc_session::{declare_lint_pass, declare_tool_lint}; use rustc_span::{InnerSpan, Span, DUMMY_SP}; use rustc_typeck::hir_ty_to_ty; use crate::utils::{in_constant, qpath_res, span_lint_and_then}; use if_chain::if_chain; declare_clippy_lint! { /// **What it does:** Checks for declaration of `const` items which is interior /// mutable (e.g., contains a `Cell`, `Mutex`, `AtomicXxxx`, etc.). /// /// **Why is this bad?** Consts are copied everywhere they are referenced, i.e., /// every time you refer to the const a fresh instance of the `Cell` or `Mutex` /// or `AtomicXxxx` will be created, which defeats the whole purpose of using /// these types in the first place. /// /// The `const` should better be replaced by a `static` item if a global /// variable is wanted, or replaced by a `const fn` if a constructor is wanted. /// /// **Known problems:** A "non-constant" const item is a legacy way to supply an /// initialized value to downstream `static` items (e.g., the /// `std::sync::ONCE_INIT` constant). In this case the use of `const` is legit, /// and this lint should be suppressed. /// /// **Example:** /// ```rust /// use std::sync::atomic::{AtomicUsize, Ordering::SeqCst}; /// /// // Bad. /// const CONST_ATOM: AtomicUsize = AtomicUsize::new(12); /// CONST_ATOM.store(6, SeqCst); // the content of the atomic is unchanged /// assert_eq!(CONST_ATOM.load(SeqCst), 12); // because the CONST_ATOM in these lines are distinct /// /// // Good. /// static STATIC_ATOM: AtomicUsize = AtomicUsize::new(15); /// STATIC_ATOM.store(9, SeqCst); /// assert_eq!(STATIC_ATOM.load(SeqCst), 9); // use a `static` item to refer to the same instance /// ``` pub DECLARE_INTERIOR_MUTABLE_CONST, correctness, "declaring `const` with interior mutability" } declare_clippy_lint! { /// **What it does:** Checks if `const` items which is interior mutable (e.g., /// contains a `Cell`, `Mutex`, `AtomicXxxx`, etc.) has been borrowed directly. /// /// **Why is this bad?** Consts are copied everywhere they are referenced, i.e., /// every time you refer to the const a fresh instance of the `Cell` or `Mutex` /// or `AtomicXxxx` will be created, which defeats the whole purpose of using /// these types in the first place. /// /// The `const` value should be stored inside a `static` item. /// /// **Known problems:** None /// /// **Example:** /// ```rust /// use std::sync::atomic::{AtomicUsize, Ordering::SeqCst}; /// const CONST_ATOM: AtomicUsize = AtomicUsize::new(12); /// /// // Bad. /// CONST_ATOM.store(6, SeqCst); // the content of the atomic is unchanged /// assert_eq!(CONST_ATOM.load(SeqCst), 12); // because the CONST_ATOM in these lines are distinct /// /// // Good. /// static STATIC_ATOM: AtomicUsize = CONST_ATOM; /// STATIC_ATOM.store(9, SeqCst); /// assert_eq!(STATIC_ATOM.load(SeqCst), 9); // use a `static` item to refer to the same instance /// ``` pub BORROW_INTERIOR_MUTABLE_CONST, correctness, "referencing `const` with interior mutability" } #[derive(Copy, Clone)] enum Source { Item { item: Span }, Assoc { item: Span }, Expr { expr: Span }, } impl Source { #[must_use] fn lint(&self) -> (&'static Lint, &'static str, Span) { match self { Self::Item { item } | Self::Assoc { item, .. } => ( DECLARE_INTERIOR_MUTABLE_CONST, "a `const` item should never be interior mutable", *item, ), Self::Expr { expr } => ( BORROW_INTERIOR_MUTABLE_CONST, "a `const` item with interior mutability should not be borrowed", *expr, ), } } } fn verify_ty_bound<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>, source: Source) { // Ignore types whose layout is unknown since `is_freeze` reports every generic types as `!Freeze`, // making it indistinguishable from `UnsafeCell`. i.e. it isn't a tool to prove a type is // 'unfrozen'. However, this code causes a false negative in which // a type contains a layout-unknown type, but also a unsafe cell like `const CELL: Cell`. // Yet, it's better than `ty.has_type_flags(TypeFlags::HAS_TY_PARAM | TypeFlags::HAS_PROJECTION)` // since it works when a pointer indirection involves (`Cell<*const T>`). // Making up a `ParamEnv` where every generic params and assoc types are `Freeze`is another option; // but I'm not sure whether it's a decent way, if possible. if cx.tcx.layout_of(cx.param_env.and(ty)).is_err() || ty.is_freeze(cx.tcx.at(DUMMY_SP), cx.param_env) { return; } let (lint, msg, span) = source.lint(); span_lint_and_then(cx, lint, span, msg, |diag| { if span.from_expansion() { return; // Don't give suggestions into macros. } match source { Source::Item { .. } => { let const_kw_span = span.from_inner(InnerSpan::new(0, 5)); diag.span_label(const_kw_span, "make this a static item (maybe with lazy_static)"); }, Source::Assoc { .. } => (), Source::Expr { .. } => { diag.help("assign this const to a local or static variable, and use the variable here"); }, } }); } declare_lint_pass!(NonCopyConst => [DECLARE_INTERIOR_MUTABLE_CONST, BORROW_INTERIOR_MUTABLE_CONST]); impl<'tcx> LateLintPass<'tcx> for NonCopyConst { fn check_item(&mut self, cx: &LateContext<'tcx>, it: &'tcx Item<'_>) { if let ItemKind::Const(hir_ty, ..) = &it.kind { let ty = hir_ty_to_ty(cx.tcx, hir_ty); verify_ty_bound(cx, ty, Source::Item { item: it.span }); } } fn check_trait_item(&mut self, cx: &LateContext<'tcx>, trait_item: &'tcx TraitItem<'_>) { if let TraitItemKind::Const(hir_ty, ..) = &trait_item.kind { let ty = hir_ty_to_ty(cx.tcx, hir_ty); // Normalize assoc types because ones originated from generic params // bounded other traits could have their bound. let normalized = cx.tcx.normalize_erasing_regions(cx.param_env, ty); verify_ty_bound(cx, normalized, Source::Assoc { item: trait_item.span }); } } fn check_impl_item(&mut self, cx: &LateContext<'tcx>, impl_item: &'tcx ImplItem<'_>) { if let ImplItemKind::Const(hir_ty, ..) = &impl_item.kind { let item_hir_id = cx.tcx.hir().get_parent_node(impl_item.hir_id); let item = cx.tcx.hir().expect_item(item_hir_id); match &item.kind { ItemKind::Impl { of_trait: Some(of_trait_ref), .. } => { if_chain! { // Lint a trait impl item only when the definition is a generic type, // assuming a assoc const is not meant to be a interior mutable type. if let Some(of_trait_def_id) = of_trait_ref.trait_def_id(); if let Some(of_assoc_item) = specialization_graph::Node::Trait(of_trait_def_id) .item(cx.tcx, impl_item.ident, AssocKind::Const, of_trait_def_id); if cx .tcx .layout_of(cx.tcx.param_env(of_trait_def_id).and( // Normalize assoc types because ones originated from generic params // bounded other traits could have their bound at the trait defs; // and, in that case, the definition is *not* generic. cx.tcx.normalize_erasing_regions( cx.tcx.param_env(of_trait_def_id), cx.tcx.type_of(of_assoc_item.def_id), ), )) .is_err(); then { let ty = hir_ty_to_ty(cx.tcx, hir_ty); let normalized = cx.tcx.normalize_erasing_regions(cx.param_env, ty); verify_ty_bound( cx, normalized, Source::Assoc { item: impl_item.span, }, ); } } }, ItemKind::Impl { of_trait: None, .. } => { let ty = hir_ty_to_ty(cx.tcx, hir_ty); // Normalize assoc types originated from generic params. let normalized = cx.tcx.normalize_erasing_regions(cx.param_env, ty); verify_ty_bound(cx, normalized, Source::Assoc { item: impl_item.span }); }, _ => (), } } } fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) { if let ExprKind::Path(qpath) = &expr.kind { // Only lint if we use the const item inside a function. if in_constant(cx, expr.hir_id) { return; } // Make sure it is a const item. match qpath_res(cx, qpath, expr.hir_id) { Res::Def(DefKind::Const | DefKind::AssocConst, _) => {}, _ => return, }; // Climb up to resolve any field access and explicit referencing. let mut cur_expr = expr; let mut dereferenced_expr = expr; let mut needs_check_adjustment = true; loop { let parent_id = cx.tcx.hir().get_parent_node(cur_expr.hir_id); if parent_id == cur_expr.hir_id { break; } if let Some(Node::Expr(parent_expr)) = cx.tcx.hir().find(parent_id) { match &parent_expr.kind { ExprKind::AddrOf(..) => { // `&e` => `e` must be referenced. needs_check_adjustment = false; }, ExprKind::Field(..) => { needs_check_adjustment = true; // Check whether implicit dereferences happened; // if so, no need to go further up // because of the same reason as the `ExprKind::Unary` case. if cx .typeck_results() .expr_adjustments(dereferenced_expr) .iter() .any(|adj| matches!(adj.kind, Adjust::Deref(_))) { break; } dereferenced_expr = parent_expr; }, ExprKind::Index(e, _) if ptr::eq(&**e, cur_expr) => { // `e[i]` => desugared to `*Index::index(&e, i)`, // meaning `e` must be referenced. // no need to go further up since a method call is involved now. needs_check_adjustment = false; break; }, ExprKind::Unary(UnOp::UnDeref, _) => { // `*e` => desugared to `*Deref::deref(&e)`, // meaning `e` must be referenced. // no need to go further up since a method call is involved now. needs_check_adjustment = false; break; }, _ => break, } cur_expr = parent_expr; } else { break; } } let ty = if needs_check_adjustment { let adjustments = cx.typeck_results().expr_adjustments(dereferenced_expr); if let Some(i) = adjustments .iter() .position(|adj| matches!(adj.kind, Adjust::Borrow(_) | Adjust::Deref(_))) { if i == 0 { cx.typeck_results().expr_ty(dereferenced_expr) } else { adjustments[i - 1].target } } else { // No borrow adjustments means the entire const is moved. return; } } else { cx.typeck_results().expr_ty(dereferenced_expr) }; verify_ty_bound(cx, ty, Source::Expr { expr: expr.span }); } } }