// Copyright 2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use llvm; use llvm::{ContextRef, ModuleRef, ValueRef, BuilderRef}; use rustc::dep_graph::{DepGraph, DepNode, DepTrackingMap, DepTrackingMapConfig, WorkProduct}; use middle::cstore::LinkMeta; use rustc::hir::def::ExportMap; use rustc::hir::def_id::DefId; use rustc::traits; use base; use builder::Builder; use common::BuilderRef_res; use debuginfo; use declare; use glue::DropGlueKind; use monomorphize::Instance; use partitioning::CodegenUnit; use trans_item::TransItem; use type_::Type; use rustc_data_structures::base_n; use rustc::ty::subst::Substs; use rustc::ty::{self, Ty, TyCtxt}; use session::config::NoDebugInfo; use session::Session; use session::config; use symbol_map::SymbolMap; use util::nodemap::{NodeSet, DefIdMap, FxHashMap, FxHashSet}; use std::ffi::{CStr, CString}; use std::cell::{Cell, RefCell}; use std::marker::PhantomData; use std::ptr; use std::rc::Rc; use std::str; use syntax::ast; use syntax::symbol::InternedString; use abi::FnType; pub struct Stats { pub n_glues_created: Cell, pub n_null_glues: Cell, pub n_real_glues: Cell, pub n_fns: Cell, pub n_inlines: Cell, pub n_closures: Cell, pub n_llvm_insns: Cell, pub llvm_insns: RefCell>, // (ident, llvm-instructions) pub fn_stats: RefCell >, } /// The shared portion of a `CrateContext`. There is one `SharedCrateContext` /// per crate. The data here is shared between all compilation units of the /// crate, so it must not contain references to any LLVM data structures /// (aside from metadata-related ones). pub struct SharedCrateContext<'a, 'tcx: 'a> { metadata_llmod: ModuleRef, metadata_llcx: ContextRef, export_map: ExportMap, exported_symbols: NodeSet, link_meta: LinkMeta, tcx: TyCtxt<'a, 'tcx, 'tcx>, stats: Stats, check_overflow: bool, use_dll_storage_attrs: bool, translation_items: RefCell>>, trait_cache: RefCell>>, project_cache: RefCell>>, } /// The local portion of a `CrateContext`. There is one `LocalCrateContext` /// per compilation unit. Each one has its own LLVM `ContextRef` so that /// several compilation units may be optimized in parallel. All other LLVM /// data structures in the `LocalCrateContext` are tied to that `ContextRef`. pub struct LocalCrateContext<'tcx> { llmod: ModuleRef, llcx: ContextRef, previous_work_product: Option, codegen_unit: CodegenUnit<'tcx>, needs_unwind_cleanup_cache: RefCell, bool>>, fn_pointer_shims: RefCell, ValueRef>>, drop_glues: RefCell, (ValueRef, FnType)>>, /// Cache instances of monomorphic and polymorphic items instances: RefCell, ValueRef>>, /// Cache generated vtables vtables: RefCell, Option>), ValueRef>>, /// Cache of constant strings, const_cstr_cache: RefCell>, /// Reverse-direction for const ptrs cast from globals. /// Key is a ValueRef holding a *T, /// Val is a ValueRef holding a *[T]. /// /// Needed because LLVM loses pointer->pointee association /// when we ptrcast, and we have to ptrcast during translation /// of a [T] const because we form a slice, a (*T,usize) pair, not /// a pointer to an LLVM array type. Similar for trait objects. const_unsized: RefCell>, /// Cache of emitted const globals (value -> global) const_globals: RefCell>, /// Cache of emitted const values const_values: RefCell), ValueRef>>, /// Cache of external const values extern_const_values: RefCell>, /// Mapping from static definitions to their DefId's. statics: RefCell>, impl_method_cache: RefCell>, /// Cache of closure wrappers for bare fn's. closure_bare_wrapper_cache: RefCell>, /// List of globals for static variables which need to be passed to the /// LLVM function ReplaceAllUsesWith (RAUW) when translation is complete. /// (We have to make sure we don't invalidate any ValueRefs referring /// to constants.) statics_to_rauw: RefCell>, lltypes: RefCell, Type>>, llsizingtypes: RefCell, Type>>, type_hashcodes: RefCell, String>>, int_type: Type, opaque_vec_type: Type, str_slice_type: Type, builder: BuilderRef_res, /// Holds the LLVM values for closure IDs. closure_vals: RefCell, ValueRef>>, dbg_cx: Option>, eh_personality: Cell>, eh_unwind_resume: Cell>, rust_try_fn: Cell>, intrinsics: RefCell>, /// Number of LLVM instructions translated into this `LocalCrateContext`. /// This is used to perform some basic load-balancing to keep all LLVM /// contexts around the same size. n_llvm_insns: Cell, /// Depth of the current type-of computation - used to bail out type_of_depth: Cell, symbol_map: Rc>, /// A counter that is used for generating local symbol names local_gen_sym_counter: Cell, } // Implement DepTrackingMapConfig for `trait_cache` pub struct TraitSelectionCache<'tcx> { data: PhantomData<&'tcx ()> } impl<'tcx> DepTrackingMapConfig for TraitSelectionCache<'tcx> { type Key = ty::PolyTraitRef<'tcx>; type Value = traits::Vtable<'tcx, ()>; fn to_dep_node(key: &ty::PolyTraitRef<'tcx>) -> DepNode { key.to_poly_trait_predicate().dep_node() } } // # Global Cache pub struct ProjectionCache<'gcx> { data: PhantomData<&'gcx ()> } impl<'gcx> DepTrackingMapConfig for ProjectionCache<'gcx> { type Key = Ty<'gcx>; type Value = Ty<'gcx>; fn to_dep_node(key: &Self::Key) -> DepNode { // Ideally, we'd just put `key` into the dep-node, but we // can't put full types in there. So just collect up all the // def-ids of structs/enums as well as any traits that we // project out of. It doesn't matter so much what we do here, // except that if we are too coarse, we'll create overly // coarse edges between impls and the trans. For example, if // we just used the def-id of things we are projecting out of, // then the key for `::T` and `::T` would both share a dep-node // (`TraitSelect(SomeTrait)`), and hence the impls for both // `Foo` and `Bar` would be considered inputs. So a change to // `Bar` would affect things that just normalized `Foo`. // Anyway, this heuristic is not ideal, but better than // nothing. let def_ids: Vec = key.walk() .filter_map(|t| match t.sty { ty::TyAdt(adt_def, _) => Some(adt_def.did), ty::TyProjection(ref proj) => Some(proj.trait_ref.def_id), _ => None, }) .collect(); DepNode::TraitSelect(def_ids) } } /// This list owns a number of LocalCrateContexts and binds them to their common /// SharedCrateContext. This type just exists as a convenience, something to /// pass around all LocalCrateContexts with and get an iterator over them. pub struct CrateContextList<'a, 'tcx: 'a> { shared: &'a SharedCrateContext<'a, 'tcx>, local_ccxs: Vec>, } impl<'a, 'tcx: 'a> CrateContextList<'a, 'tcx> { pub fn new(shared_ccx: &'a SharedCrateContext<'a, 'tcx>, codegen_units: Vec>, previous_work_products: Vec>, symbol_map: Rc>) -> CrateContextList<'a, 'tcx> { CrateContextList { shared: shared_ccx, local_ccxs: codegen_units.into_iter().zip(previous_work_products).map(|(cgu, wp)| { LocalCrateContext::new(shared_ccx, cgu, wp, symbol_map.clone()) }).collect() } } /// Iterate over all crate contexts, whether or not they need /// translation. That is, whether or not a `.o` file is available /// for re-use from a previous incr. comp.). pub fn iter_all<'b>(&'b self) -> CrateContextIterator<'b, 'tcx> { CrateContextIterator { shared: self.shared, index: 0, local_ccxs: &self.local_ccxs[..], filter_to_previous_work_product_unavail: false, } } /// Iterator over all CCX that need translation (cannot reuse results from /// previous incr. comp.). pub fn iter_need_trans<'b>(&'b self) -> CrateContextIterator<'b, 'tcx> { CrateContextIterator { shared: self.shared, index: 0, local_ccxs: &self.local_ccxs[..], filter_to_previous_work_product_unavail: true, } } pub fn shared(&self) -> &'a SharedCrateContext<'a, 'tcx> { self.shared } } /// A CrateContext value binds together one LocalCrateContext with the /// SharedCrateContext. It exists as a convenience wrapper, so we don't have to /// pass around (SharedCrateContext, LocalCrateContext) tuples all over trans. pub struct CrateContext<'a, 'tcx: 'a> { shared: &'a SharedCrateContext<'a, 'tcx>, local_ccxs: &'a [LocalCrateContext<'tcx>], /// The index of `local` in `local_ccxs`. This is used in /// `maybe_iter(true)` to identify the original `LocalCrateContext`. index: usize, } pub struct CrateContextIterator<'a, 'tcx: 'a> { shared: &'a SharedCrateContext<'a, 'tcx>, local_ccxs: &'a [LocalCrateContext<'tcx>], index: usize, /// if true, only return results where `previous_work_product` is none filter_to_previous_work_product_unavail: bool, } impl<'a, 'tcx> Iterator for CrateContextIterator<'a,'tcx> { type Item = CrateContext<'a, 'tcx>; fn next(&mut self) -> Option> { loop { if self.index >= self.local_ccxs.len() { return None; } let index = self.index; self.index += 1; let ccx = CrateContext { shared: self.shared, index: index, local_ccxs: self.local_ccxs, }; if self.filter_to_previous_work_product_unavail && ccx.previous_work_product().is_some() { continue; } return Some(ccx); } } } /// The iterator produced by `CrateContext::maybe_iter`. pub struct CrateContextMaybeIterator<'a, 'tcx: 'a> { shared: &'a SharedCrateContext<'a, 'tcx>, local_ccxs: &'a [LocalCrateContext<'tcx>], index: usize, single: bool, origin: usize, } impl<'a, 'tcx> Iterator for CrateContextMaybeIterator<'a, 'tcx> { type Item = (CrateContext<'a, 'tcx>, bool); fn next(&mut self) -> Option<(CrateContext<'a, 'tcx>, bool)> { if self.index >= self.local_ccxs.len() { return None; } let index = self.index; self.index += 1; if self.single { self.index = self.local_ccxs.len(); } let ccx = CrateContext { shared: self.shared, index: index, local_ccxs: self.local_ccxs }; Some((ccx, index == self.origin)) } } pub fn get_reloc_model(sess: &Session) -> llvm::RelocMode { let reloc_model_arg = match sess.opts.cg.relocation_model { Some(ref s) => &s[..], None => &sess.target.target.options.relocation_model[..], }; match ::back::write::RELOC_MODEL_ARGS.iter().find( |&&arg| arg.0 == reloc_model_arg) { Some(x) => x.1, _ => { sess.err(&format!("{:?} is not a valid relocation mode", sess.opts .cg .code_model)); sess.abort_if_errors(); bug!(); } } } fn is_any_library(sess: &Session) -> bool { sess.crate_types.borrow().iter().any(|ty| { *ty != config::CrateTypeExecutable }) } pub fn is_pie_binary(sess: &Session) -> bool { !is_any_library(sess) && get_reloc_model(sess) == llvm::RelocMode::PIC } unsafe fn create_context_and_module(sess: &Session, mod_name: &str) -> (ContextRef, ModuleRef) { let llcx = llvm::LLVMContextCreate(); let mod_name = CString::new(mod_name).unwrap(); let llmod = llvm::LLVMModuleCreateWithNameInContext(mod_name.as_ptr(), llcx); // Ensure the data-layout values hardcoded remain the defaults. if sess.target.target.options.is_builtin { let tm = ::back::write::create_target_machine(sess); llvm::LLVMRustSetDataLayoutFromTargetMachine(llmod, tm); llvm::LLVMRustDisposeTargetMachine(tm); let data_layout = llvm::LLVMGetDataLayout(llmod); let data_layout = str::from_utf8(CStr::from_ptr(data_layout).to_bytes()) .ok().expect("got a non-UTF8 data-layout from LLVM"); // Unfortunately LLVM target specs change over time, and right now we // don't have proper support to work with any more than one // `data_layout` than the one that is in the rust-lang/rust repo. If // this compiler is configured against a custom LLVM, we may have a // differing data layout, even though we should update our own to use // that one. // // As an interim hack, if CFG_LLVM_ROOT is not an empty string then we // disable this check entirely as we may be configured with something // that has a different target layout. // // Unsure if this will actually cause breakage when rustc is configured // as such. // // FIXME(#34960) let cfg_llvm_root = option_env!("CFG_LLVM_ROOT").unwrap_or(""); let custom_llvm_used = cfg_llvm_root.trim() != ""; if !custom_llvm_used && sess.target.target.data_layout != data_layout { bug!("data-layout for builtin `{}` target, `{}`, \ differs from LLVM default, `{}`", sess.target.target.llvm_target, sess.target.target.data_layout, data_layout); } } let data_layout = CString::new(&sess.target.target.data_layout[..]).unwrap(); llvm::LLVMSetDataLayout(llmod, data_layout.as_ptr()); let llvm_target = sess.target.target.llvm_target.as_bytes(); let llvm_target = CString::new(llvm_target).unwrap(); llvm::LLVMRustSetNormalizedTarget(llmod, llvm_target.as_ptr()); if is_pie_binary(sess) { llvm::LLVMRustSetModulePIELevel(llmod); } (llcx, llmod) } impl<'b, 'tcx> SharedCrateContext<'b, 'tcx> { pub fn new(tcx: TyCtxt<'b, 'tcx, 'tcx>, export_map: ExportMap, link_meta: LinkMeta, exported_symbols: NodeSet, check_overflow: bool) -> SharedCrateContext<'b, 'tcx> { let (metadata_llcx, metadata_llmod) = unsafe { create_context_and_module(&tcx.sess, "metadata") }; // An interesting part of Windows which MSVC forces our hand on (and // apparently MinGW didn't) is the usage of `dllimport` and `dllexport` // attributes in LLVM IR as well as native dependencies (in C these // correspond to `__declspec(dllimport)`). // // Whenever a dynamic library is built by MSVC it must have its public // interface specified by functions tagged with `dllexport` or otherwise // they're not available to be linked against. This poses a few problems // for the compiler, some of which are somewhat fundamental, but we use // the `use_dll_storage_attrs` variable below to attach the `dllexport` // attribute to all LLVM functions that are exported e.g. they're // already tagged with external linkage). This is suboptimal for a few // reasons: // // * If an object file will never be included in a dynamic library, // there's no need to attach the dllexport attribute. Most object // files in Rust are not destined to become part of a dll as binaries // are statically linked by default. // * If the compiler is emitting both an rlib and a dylib, the same // source object file is currently used but with MSVC this may be less // feasible. The compiler may be able to get around this, but it may // involve some invasive changes to deal with this. // // The flipside of this situation is that whenever you link to a dll and // you import a function from it, the import should be tagged with // `dllimport`. At this time, however, the compiler does not emit // `dllimport` for any declarations other than constants (where it is // required), which is again suboptimal for even more reasons! // // * Calling a function imported from another dll without using // `dllimport` causes the linker/compiler to have extra overhead (one // `jmp` instruction on x86) when calling the function. // * The same object file may be used in different circumstances, so a // function may be imported from a dll if the object is linked into a // dll, but it may be just linked against if linked into an rlib. // * The compiler has no knowledge about whether native functions should // be tagged dllimport or not. // // For now the compiler takes the perf hit (I do not have any numbers to // this effect) by marking very little as `dllimport` and praying the // linker will take care of everything. Fixing this problem will likely // require adding a few attributes to Rust itself (feature gated at the // start) and then strongly recommending static linkage on MSVC! let use_dll_storage_attrs = tcx.sess.target.target.options.is_like_msvc; SharedCrateContext { metadata_llmod: metadata_llmod, metadata_llcx: metadata_llcx, export_map: export_map, exported_symbols: exported_symbols, link_meta: link_meta, tcx: tcx, stats: Stats { n_glues_created: Cell::new(0), n_null_glues: Cell::new(0), n_real_glues: Cell::new(0), n_fns: Cell::new(0), n_inlines: Cell::new(0), n_closures: Cell::new(0), n_llvm_insns: Cell::new(0), llvm_insns: RefCell::new(FxHashMap()), fn_stats: RefCell::new(Vec::new()), }, check_overflow: check_overflow, use_dll_storage_attrs: use_dll_storage_attrs, translation_items: RefCell::new(FxHashSet()), trait_cache: RefCell::new(DepTrackingMap::new(tcx.dep_graph.clone())), project_cache: RefCell::new(DepTrackingMap::new(tcx.dep_graph.clone())), } } pub fn metadata_llmod(&self) -> ModuleRef { self.metadata_llmod } pub fn metadata_llcx(&self) -> ContextRef { self.metadata_llcx } pub fn export_map<'a>(&'a self) -> &'a ExportMap { &self.export_map } pub fn exported_symbols<'a>(&'a self) -> &'a NodeSet { &self.exported_symbols } pub fn trait_cache(&self) -> &RefCell>> { &self.trait_cache } pub fn project_cache(&self) -> &RefCell>> { &self.project_cache } pub fn link_meta<'a>(&'a self) -> &'a LinkMeta { &self.link_meta } pub fn tcx<'a>(&'a self) -> TyCtxt<'a, 'tcx, 'tcx> { self.tcx } pub fn sess<'a>(&'a self) -> &'a Session { &self.tcx.sess } pub fn dep_graph<'a>(&'a self) -> &'a DepGraph { &self.tcx.dep_graph } pub fn stats<'a>(&'a self) -> &'a Stats { &self.stats } pub fn use_dll_storage_attrs(&self) -> bool { self.use_dll_storage_attrs } pub fn translation_items(&self) -> &RefCell>> { &self.translation_items } /// Given the def-id of some item that has no type parameters, make /// a suitable "empty substs" for it. pub fn empty_substs_for_def_id(&self, item_def_id: DefId) -> &'tcx Substs<'tcx> { Substs::for_item(self.tcx(), item_def_id, |_, _| self.tcx().mk_region(ty::ReErased), |_, _| { bug!("empty_substs_for_def_id: {:?} has type parameters", item_def_id) }) } pub fn metadata_symbol_name(&self) -> String { format!("rust_metadata_{}_{}", self.link_meta().crate_name, self.link_meta().crate_hash) } } impl<'tcx> LocalCrateContext<'tcx> { fn new<'a>(shared: &SharedCrateContext<'a, 'tcx>, codegen_unit: CodegenUnit<'tcx>, previous_work_product: Option, symbol_map: Rc>) -> LocalCrateContext<'tcx> { unsafe { // Append ".rs" to LLVM module identifier. // // LLVM code generator emits a ".file filename" directive // for ELF backends. Value of the "filename" is set as the // LLVM module identifier. Due to a LLVM MC bug[1], LLVM // crashes if the module identifier is same as other symbols // such as a function name in the module. // 1. http://llvm.org/bugs/show_bug.cgi?id=11479 let llmod_id = format!("{}.rs", codegen_unit.name()); let (llcx, llmod) = create_context_and_module(&shared.tcx.sess, &llmod_id[..]); let dbg_cx = if shared.tcx.sess.opts.debuginfo != NoDebugInfo { let dctx = debuginfo::CrateDebugContext::new(llmod); debuginfo::metadata::compile_unit_metadata(shared, &dctx, shared.tcx.sess); Some(dctx) } else { None }; let local_ccx = LocalCrateContext { llmod: llmod, llcx: llcx, previous_work_product: previous_work_product, codegen_unit: codegen_unit, needs_unwind_cleanup_cache: RefCell::new(FxHashMap()), fn_pointer_shims: RefCell::new(FxHashMap()), drop_glues: RefCell::new(FxHashMap()), instances: RefCell::new(FxHashMap()), vtables: RefCell::new(FxHashMap()), const_cstr_cache: RefCell::new(FxHashMap()), const_unsized: RefCell::new(FxHashMap()), const_globals: RefCell::new(FxHashMap()), const_values: RefCell::new(FxHashMap()), extern_const_values: RefCell::new(DefIdMap()), statics: RefCell::new(FxHashMap()), impl_method_cache: RefCell::new(FxHashMap()), closure_bare_wrapper_cache: RefCell::new(FxHashMap()), statics_to_rauw: RefCell::new(Vec::new()), lltypes: RefCell::new(FxHashMap()), llsizingtypes: RefCell::new(FxHashMap()), type_hashcodes: RefCell::new(FxHashMap()), int_type: Type::from_ref(ptr::null_mut()), opaque_vec_type: Type::from_ref(ptr::null_mut()), str_slice_type: Type::from_ref(ptr::null_mut()), builder: BuilderRef_res(llvm::LLVMCreateBuilderInContext(llcx)), closure_vals: RefCell::new(FxHashMap()), dbg_cx: dbg_cx, eh_personality: Cell::new(None), eh_unwind_resume: Cell::new(None), rust_try_fn: Cell::new(None), intrinsics: RefCell::new(FxHashMap()), n_llvm_insns: Cell::new(0), type_of_depth: Cell::new(0), symbol_map: symbol_map, local_gen_sym_counter: Cell::new(0), }; let (int_type, opaque_vec_type, str_slice_ty, mut local_ccx) = { // Do a little dance to create a dummy CrateContext, so we can // create some things in the LLVM module of this codegen unit let mut local_ccxs = vec![local_ccx]; let (int_type, opaque_vec_type, str_slice_ty) = { let dummy_ccx = LocalCrateContext::dummy_ccx(shared, local_ccxs.as_mut_slice()); let mut str_slice_ty = Type::named_struct(&dummy_ccx, "str_slice"); str_slice_ty.set_struct_body(&[Type::i8p(&dummy_ccx), Type::int(&dummy_ccx)], false); (Type::int(&dummy_ccx), Type::opaque_vec(&dummy_ccx), str_slice_ty) }; (int_type, opaque_vec_type, str_slice_ty, local_ccxs.pop().unwrap()) }; local_ccx.int_type = int_type; local_ccx.opaque_vec_type = opaque_vec_type; local_ccx.str_slice_type = str_slice_ty; if shared.tcx.sess.count_llvm_insns() { base::init_insn_ctxt() } local_ccx } } /// Create a dummy `CrateContext` from `self` and the provided /// `SharedCrateContext`. This is somewhat dangerous because `self` may /// not be fully initialized. /// /// This is used in the `LocalCrateContext` constructor to allow calling /// functions that expect a complete `CrateContext`, even before the local /// portion is fully initialized and attached to the `SharedCrateContext`. fn dummy_ccx<'a>(shared: &'a SharedCrateContext<'a, 'tcx>, local_ccxs: &'a [LocalCrateContext<'tcx>]) -> CrateContext<'a, 'tcx> { assert!(local_ccxs.len() == 1); CrateContext { shared: shared, index: 0, local_ccxs: local_ccxs } } } impl<'b, 'tcx> CrateContext<'b, 'tcx> { pub fn shared(&self) -> &'b SharedCrateContext<'b, 'tcx> { self.shared } pub fn local(&self) -> &'b LocalCrateContext<'tcx> { &self.local_ccxs[self.index] } /// Either iterate over only `self`, or iterate over all `CrateContext`s in /// the `SharedCrateContext`. The iterator produces `(ccx, is_origin)` /// pairs, where `is_origin` is `true` if `ccx` is `self` and `false` /// otherwise. This method is useful for avoiding code duplication in /// cases where it may or may not be necessary to translate code into every /// context. pub fn maybe_iter(&self, iter_all: bool) -> CrateContextMaybeIterator<'b, 'tcx> { CrateContextMaybeIterator { shared: self.shared, index: if iter_all { 0 } else { self.index }, single: !iter_all, origin: self.index, local_ccxs: self.local_ccxs, } } pub fn tcx<'a>(&'a self) -> TyCtxt<'a, 'tcx, 'tcx> { self.shared.tcx } pub fn sess<'a>(&'a self) -> &'a Session { &self.shared.tcx.sess } pub fn builder<'a>(&'a self) -> Builder<'a, 'tcx> { Builder::new(self) } pub fn raw_builder<'a>(&'a self) -> BuilderRef { self.local().builder.b } pub fn get_intrinsic(&self, key: &str) -> ValueRef { if let Some(v) = self.intrinsics().borrow().get(key).cloned() { return v; } match declare_intrinsic(self, key) { Some(v) => return v, None => bug!("unknown intrinsic '{}'", key) } } pub fn llmod(&self) -> ModuleRef { self.local().llmod } pub fn llcx(&self) -> ContextRef { self.local().llcx } pub fn previous_work_product(&self) -> Option<&WorkProduct> { self.local().previous_work_product.as_ref() } pub fn codegen_unit(&self) -> &CodegenUnit<'tcx> { &self.local().codegen_unit } pub fn td(&self) -> llvm::TargetDataRef { unsafe { llvm::LLVMRustGetModuleDataLayout(self.llmod()) } } pub fn export_map<'a>(&'a self) -> &'a ExportMap { &self.shared.export_map } pub fn exported_symbols<'a>(&'a self) -> &'a NodeSet { &self.shared.exported_symbols } pub fn link_meta<'a>(&'a self) -> &'a LinkMeta { &self.shared.link_meta } pub fn needs_unwind_cleanup_cache(&self) -> &RefCell, bool>> { &self.local().needs_unwind_cleanup_cache } pub fn fn_pointer_shims(&self) -> &RefCell, ValueRef>> { &self.local().fn_pointer_shims } pub fn drop_glues<'a>(&'a self) -> &'a RefCell, (ValueRef, FnType)>> { &self.local().drop_glues } pub fn local_node_for_inlined_defid<'a>(&'a self, def_id: DefId) -> Option { self.sess().cstore.local_node_for_inlined_defid(def_id) } pub fn defid_for_inlined_node<'a>(&'a self, node_id: ast::NodeId) -> Option { self.sess().cstore.defid_for_inlined_node(node_id) } pub fn instances<'a>(&'a self) -> &'a RefCell, ValueRef>> { &self.local().instances } pub fn vtables<'a>(&'a self) -> &'a RefCell, Option>), ValueRef>> { &self.local().vtables } pub fn const_cstr_cache<'a>(&'a self) -> &'a RefCell> { &self.local().const_cstr_cache } pub fn const_unsized<'a>(&'a self) -> &'a RefCell> { &self.local().const_unsized } pub fn const_globals<'a>(&'a self) -> &'a RefCell> { &self.local().const_globals } pub fn const_values<'a>(&'a self) -> &'a RefCell), ValueRef>> { &self.local().const_values } pub fn extern_const_values<'a>(&'a self) -> &'a RefCell> { &self.local().extern_const_values } pub fn statics<'a>(&'a self) -> &'a RefCell> { &self.local().statics } pub fn impl_method_cache<'a>(&'a self) -> &'a RefCell> { &self.local().impl_method_cache } pub fn closure_bare_wrapper_cache<'a>(&'a self) -> &'a RefCell> { &self.local().closure_bare_wrapper_cache } pub fn statics_to_rauw<'a>(&'a self) -> &'a RefCell> { &self.local().statics_to_rauw } pub fn lltypes<'a>(&'a self) -> &'a RefCell, Type>> { &self.local().lltypes } pub fn llsizingtypes<'a>(&'a self) -> &'a RefCell, Type>> { &self.local().llsizingtypes } pub fn type_hashcodes<'a>(&'a self) -> &'a RefCell, String>> { &self.local().type_hashcodes } pub fn stats<'a>(&'a self) -> &'a Stats { &self.shared.stats } pub fn int_type(&self) -> Type { self.local().int_type } pub fn opaque_vec_type(&self) -> Type { self.local().opaque_vec_type } pub fn str_slice_type(&self) -> Type { self.local().str_slice_type } pub fn closure_vals<'a>(&'a self) -> &'a RefCell, ValueRef>> { &self.local().closure_vals } pub fn dbg_cx<'a>(&'a self) -> &'a Option> { &self.local().dbg_cx } pub fn eh_personality<'a>(&'a self) -> &'a Cell> { &self.local().eh_personality } pub fn eh_unwind_resume<'a>(&'a self) -> &'a Cell> { &self.local().eh_unwind_resume } pub fn rust_try_fn<'a>(&'a self) -> &'a Cell> { &self.local().rust_try_fn } fn intrinsics<'a>(&'a self) -> &'a RefCell> { &self.local().intrinsics } pub fn count_llvm_insn(&self) { self.local().n_llvm_insns.set(self.local().n_llvm_insns.get() + 1); } pub fn obj_size_bound(&self) -> u64 { self.tcx().data_layout.obj_size_bound() } pub fn report_overbig_object(&self, obj: Ty<'tcx>) -> ! { self.sess().fatal( &format!("the type `{:?}` is too big for the current architecture", obj)) } pub fn enter_type_of(&self, ty: Ty<'tcx>) -> TypeOfDepthLock<'b, 'tcx> { let current_depth = self.local().type_of_depth.get(); debug!("enter_type_of({:?}) at depth {:?}", ty, current_depth); if current_depth > self.sess().recursion_limit.get() { self.sess().fatal( &format!("overflow representing the type `{}`", ty)) } self.local().type_of_depth.set(current_depth + 1); TypeOfDepthLock(self.local()) } pub fn layout_of(&self, ty: Ty<'tcx>) -> &'tcx ty::layout::Layout { self.tcx().infer_ctxt(None, None, traits::Reveal::All).enter(|infcx| { ty.layout(&infcx).unwrap_or_else(|e| { match e { ty::layout::LayoutError::SizeOverflow(_) => self.sess().fatal(&e.to_string()), _ => bug!("failed to get layout for `{}`: {}", ty, e) } }) }) } pub fn check_overflow(&self) -> bool { self.shared.check_overflow } pub fn use_dll_storage_attrs(&self) -> bool { self.shared.use_dll_storage_attrs() } pub fn symbol_map(&self) -> &SymbolMap<'tcx> { &*self.local().symbol_map } pub fn translation_items(&self) -> &RefCell>> { &self.shared.translation_items } /// Given the def-id of some item that has no type parameters, make /// a suitable "empty substs" for it. pub fn empty_substs_for_def_id(&self, item_def_id: DefId) -> &'tcx Substs<'tcx> { self.shared().empty_substs_for_def_id(item_def_id) } /// Generate a new symbol name with the given prefix. This symbol name must /// only be used for definitions with `internal` or `private` linkage. pub fn generate_local_symbol_name(&self, prefix: &str) -> String { let idx = self.local().local_gen_sym_counter.get(); self.local().local_gen_sym_counter.set(idx + 1); // Include a '.' character, so there can be no accidental conflicts with // user defined names let mut name = String::with_capacity(prefix.len() + 6); name.push_str(prefix); name.push_str("."); base_n::push_str(idx as u64, base_n::ALPHANUMERIC_ONLY, &mut name); name } } pub struct TypeOfDepthLock<'a, 'tcx: 'a>(&'a LocalCrateContext<'tcx>); impl<'a, 'tcx> Drop for TypeOfDepthLock<'a, 'tcx> { fn drop(&mut self) { self.0.type_of_depth.set(self.0.type_of_depth.get() - 1); } } /// Declare any llvm intrinsics that you might need fn declare_intrinsic(ccx: &CrateContext, key: &str) -> Option { macro_rules! ifn { ($name:expr, fn() -> $ret:expr) => ( if key == $name { let f = declare::declare_cfn(ccx, $name, Type::func(&[], &$ret)); llvm::SetUnnamedAddr(f, false); ccx.intrinsics().borrow_mut().insert($name, f.clone()); return Some(f); } ); ($name:expr, fn(...) -> $ret:expr) => ( if key == $name { let f = declare::declare_cfn(ccx, $name, Type::variadic_func(&[], &$ret)); llvm::SetUnnamedAddr(f, false); ccx.intrinsics().borrow_mut().insert($name, f.clone()); return Some(f); } ); ($name:expr, fn($($arg:expr),*) -> $ret:expr) => ( if key == $name { let f = declare::declare_cfn(ccx, $name, Type::func(&[$($arg),*], &$ret)); llvm::SetUnnamedAddr(f, false); ccx.intrinsics().borrow_mut().insert($name, f.clone()); return Some(f); } ); } macro_rules! mk_struct { ($($field_ty:expr),*) => (Type::struct_(ccx, &[$($field_ty),*], false)) } let i8p = Type::i8p(ccx); let void = Type::void(ccx); let i1 = Type::i1(ccx); let t_i8 = Type::i8(ccx); let t_i16 = Type::i16(ccx); let t_i32 = Type::i32(ccx); let t_i64 = Type::i64(ccx); let t_f32 = Type::f32(ccx); let t_f64 = Type::f64(ccx); ifn!("llvm.memcpy.p0i8.p0i8.i16", fn(i8p, i8p, t_i16, t_i32, i1) -> void); ifn!("llvm.memcpy.p0i8.p0i8.i32", fn(i8p, i8p, t_i32, t_i32, i1) -> void); ifn!("llvm.memcpy.p0i8.p0i8.i64", fn(i8p, i8p, t_i64, t_i32, i1) -> void); ifn!("llvm.memmove.p0i8.p0i8.i16", fn(i8p, i8p, t_i16, t_i32, i1) -> void); ifn!("llvm.memmove.p0i8.p0i8.i32", fn(i8p, i8p, t_i32, t_i32, i1) -> void); ifn!("llvm.memmove.p0i8.p0i8.i64", fn(i8p, i8p, t_i64, t_i32, i1) -> void); ifn!("llvm.memset.p0i8.i16", fn(i8p, t_i8, t_i16, t_i32, i1) -> void); ifn!("llvm.memset.p0i8.i32", fn(i8p, t_i8, t_i32, t_i32, i1) -> void); ifn!("llvm.memset.p0i8.i64", fn(i8p, t_i8, t_i64, t_i32, i1) -> void); ifn!("llvm.trap", fn() -> void); ifn!("llvm.debugtrap", fn() -> void); ifn!("llvm.frameaddress", fn(t_i32) -> i8p); ifn!("llvm.powi.f32", fn(t_f32, t_i32) -> t_f32); ifn!("llvm.powi.f64", fn(t_f64, t_i32) -> t_f64); ifn!("llvm.pow.f32", fn(t_f32, t_f32) -> t_f32); ifn!("llvm.pow.f64", fn(t_f64, t_f64) -> t_f64); ifn!("llvm.sqrt.f32", fn(t_f32) -> t_f32); ifn!("llvm.sqrt.f64", fn(t_f64) -> t_f64); ifn!("llvm.sin.f32", fn(t_f32) -> t_f32); ifn!("llvm.sin.f64", fn(t_f64) -> t_f64); ifn!("llvm.cos.f32", fn(t_f32) -> t_f32); ifn!("llvm.cos.f64", fn(t_f64) -> t_f64); ifn!("llvm.exp.f32", fn(t_f32) -> t_f32); ifn!("llvm.exp.f64", fn(t_f64) -> t_f64); ifn!("llvm.exp2.f32", fn(t_f32) -> t_f32); ifn!("llvm.exp2.f64", fn(t_f64) -> t_f64); ifn!("llvm.log.f32", fn(t_f32) -> t_f32); ifn!("llvm.log.f64", fn(t_f64) -> t_f64); ifn!("llvm.log10.f32", fn(t_f32) -> t_f32); ifn!("llvm.log10.f64", fn(t_f64) -> t_f64); ifn!("llvm.log2.f32", fn(t_f32) -> t_f32); ifn!("llvm.log2.f64", fn(t_f64) -> t_f64); ifn!("llvm.fma.f32", fn(t_f32, t_f32, t_f32) -> t_f32); ifn!("llvm.fma.f64", fn(t_f64, t_f64, t_f64) -> t_f64); ifn!("llvm.fabs.f32", fn(t_f32) -> t_f32); ifn!("llvm.fabs.f64", fn(t_f64) -> t_f64); ifn!("llvm.floor.f32", fn(t_f32) -> t_f32); ifn!("llvm.floor.f64", fn(t_f64) -> t_f64); ifn!("llvm.ceil.f32", fn(t_f32) -> t_f32); ifn!("llvm.ceil.f64", fn(t_f64) -> t_f64); ifn!("llvm.trunc.f32", fn(t_f32) -> t_f32); ifn!("llvm.trunc.f64", fn(t_f64) -> t_f64); ifn!("llvm.copysign.f32", fn(t_f32, t_f32) -> t_f32); ifn!("llvm.copysign.f64", fn(t_f64, t_f64) -> t_f64); ifn!("llvm.round.f32", fn(t_f32) -> t_f32); ifn!("llvm.round.f64", fn(t_f64) -> t_f64); ifn!("llvm.rint.f32", fn(t_f32) -> t_f32); ifn!("llvm.rint.f64", fn(t_f64) -> t_f64); ifn!("llvm.nearbyint.f32", fn(t_f32) -> t_f32); ifn!("llvm.nearbyint.f64", fn(t_f64) -> t_f64); ifn!("llvm.ctpop.i8", fn(t_i8) -> t_i8); ifn!("llvm.ctpop.i16", fn(t_i16) -> t_i16); ifn!("llvm.ctpop.i32", fn(t_i32) -> t_i32); ifn!("llvm.ctpop.i64", fn(t_i64) -> t_i64); ifn!("llvm.ctlz.i8", fn(t_i8 , i1) -> t_i8); ifn!("llvm.ctlz.i16", fn(t_i16, i1) -> t_i16); ifn!("llvm.ctlz.i32", fn(t_i32, i1) -> t_i32); ifn!("llvm.ctlz.i64", fn(t_i64, i1) -> t_i64); ifn!("llvm.cttz.i8", fn(t_i8 , i1) -> t_i8); ifn!("llvm.cttz.i16", fn(t_i16, i1) -> t_i16); ifn!("llvm.cttz.i32", fn(t_i32, i1) -> t_i32); ifn!("llvm.cttz.i64", fn(t_i64, i1) -> t_i64); ifn!("llvm.bswap.i16", fn(t_i16) -> t_i16); ifn!("llvm.bswap.i32", fn(t_i32) -> t_i32); ifn!("llvm.bswap.i64", fn(t_i64) -> t_i64); ifn!("llvm.sadd.with.overflow.i8", fn(t_i8, t_i8) -> mk_struct!{t_i8, i1}); ifn!("llvm.sadd.with.overflow.i16", fn(t_i16, t_i16) -> mk_struct!{t_i16, i1}); ifn!("llvm.sadd.with.overflow.i32", fn(t_i32, t_i32) -> mk_struct!{t_i32, i1}); ifn!("llvm.sadd.with.overflow.i64", fn(t_i64, t_i64) -> mk_struct!{t_i64, i1}); ifn!("llvm.uadd.with.overflow.i8", fn(t_i8, t_i8) -> mk_struct!{t_i8, i1}); ifn!("llvm.uadd.with.overflow.i16", fn(t_i16, t_i16) -> mk_struct!{t_i16, i1}); ifn!("llvm.uadd.with.overflow.i32", fn(t_i32, t_i32) -> mk_struct!{t_i32, i1}); ifn!("llvm.uadd.with.overflow.i64", fn(t_i64, t_i64) -> mk_struct!{t_i64, i1}); ifn!("llvm.ssub.with.overflow.i8", fn(t_i8, t_i8) -> mk_struct!{t_i8, i1}); ifn!("llvm.ssub.with.overflow.i16", fn(t_i16, t_i16) -> mk_struct!{t_i16, i1}); ifn!("llvm.ssub.with.overflow.i32", fn(t_i32, t_i32) -> mk_struct!{t_i32, i1}); ifn!("llvm.ssub.with.overflow.i64", fn(t_i64, t_i64) -> mk_struct!{t_i64, i1}); ifn!("llvm.usub.with.overflow.i8", fn(t_i8, t_i8) -> mk_struct!{t_i8, i1}); ifn!("llvm.usub.with.overflow.i16", fn(t_i16, t_i16) -> mk_struct!{t_i16, i1}); ifn!("llvm.usub.with.overflow.i32", fn(t_i32, t_i32) -> mk_struct!{t_i32, i1}); ifn!("llvm.usub.with.overflow.i64", fn(t_i64, t_i64) -> mk_struct!{t_i64, i1}); ifn!("llvm.smul.with.overflow.i8", fn(t_i8, t_i8) -> mk_struct!{t_i8, i1}); ifn!("llvm.smul.with.overflow.i16", fn(t_i16, t_i16) -> mk_struct!{t_i16, i1}); ifn!("llvm.smul.with.overflow.i32", fn(t_i32, t_i32) -> mk_struct!{t_i32, i1}); ifn!("llvm.smul.with.overflow.i64", fn(t_i64, t_i64) -> mk_struct!{t_i64, i1}); ifn!("llvm.umul.with.overflow.i8", fn(t_i8, t_i8) -> mk_struct!{t_i8, i1}); ifn!("llvm.umul.with.overflow.i16", fn(t_i16, t_i16) -> mk_struct!{t_i16, i1}); ifn!("llvm.umul.with.overflow.i32", fn(t_i32, t_i32) -> mk_struct!{t_i32, i1}); ifn!("llvm.umul.with.overflow.i64", fn(t_i64, t_i64) -> mk_struct!{t_i64, i1}); ifn!("llvm.lifetime.start", fn(t_i64,i8p) -> void); ifn!("llvm.lifetime.end", fn(t_i64, i8p) -> void); ifn!("llvm.expect.i1", fn(i1, i1) -> i1); ifn!("llvm.eh.typeid.for", fn(i8p) -> t_i32); ifn!("llvm.localescape", fn(...) -> void); ifn!("llvm.localrecover", fn(i8p, i8p, t_i32) -> i8p); ifn!("llvm.x86.seh.recoverfp", fn(i8p, i8p) -> i8p); ifn!("llvm.assume", fn(i1) -> void); if ccx.sess().opts.debuginfo != NoDebugInfo { ifn!("llvm.dbg.declare", fn(Type::metadata(ccx), Type::metadata(ccx)) -> void); ifn!("llvm.dbg.value", fn(Type::metadata(ccx), t_i64, Type::metadata(ccx)) -> void); } return None; }