// Copyright 2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. /*! * # Representation of Algebraic Data Types * * This module determines how to represent enums, structs, and tuples * based on their monomorphized types; it is responsible both for * choosing a representation and translating basic operations on * values of those types. * * Note that the interface treats everything as a general case of an * enum, so structs/tuples/etc. have one pseudo-variant with * discriminant 0; i.e., as if they were a univariant enum. * * Having everything in one place will enable improvements to data * structure representation; possibilities include: * * - User-specified alignment (e.g., cacheline-aligning parts of * concurrently accessed data structures); LLVM can't represent this * directly, so we'd have to insert padding fields in any structure * that might contain one and adjust GEP indices accordingly. See * issue #4578. * * - Using smaller integer types for discriminants. * * - Store nested enums' discriminants in the same word. Rather, if * some variants start with enums, and those enums representations * have unused alignment padding between discriminant and body, the * outer enum's discriminant can be stored there and those variants * can start at offset 0. Kind of fancy, and might need work to * make copies of the inner enum type cooperate, but it could help * with `Option` or `Result` wrapped around another enum. * * - Tagged pointers would be neat, but given that any type can be * used unboxed and any field can have pointers (including mutable) * taken to it, implementing them for Rust seems difficult. */ use core::container::Map; use core::libc::c_ulonglong; use core::option::{Option, Some, None}; use core::vec; use lib::llvm::{ValueRef, TypeRef, True, IntEQ, IntNE}; use middle::trans::_match; use middle::trans::build::*; use middle::trans::common::*; use middle::trans::machine; use middle::trans::type_of; use middle::ty; use syntax::ast; use util::ppaux::ty_to_str; /// Representations. pub enum Repr { /// C-like enums; basically an int. CEnum(int, int), // discriminant range /** * Single-case variants, and structs/tuples/records. * * Structs with destructors need a dynamic destroyedness flag to * avoid running the destructor too many times; this is included * in the `Struct` if present. */ Univariant(Struct, bool), /** * General-case enums: for each case there is a struct, and they * all start with a field for the discriminant. */ General(~[Struct]), /** * Two cases distinguished by a nullable pointer: the case with discriminant * `nndiscr` is represented by the struct `nonnull`, where the `ptrfield`th * field is known to be nonnull due to its type; if that field is null, then * it represents the other case, which is inhabited by at most one value * (and all other fields are undefined/unused). * * For example, `core::option::Option` instantiated at a safe pointer type * is represented such that `None` is a null pointer and `Some` is the * identity function. */ NullablePointer{ nonnull: Struct, nndiscr: int, ptrfield: uint, nullfields: ~[ty::t] } } /// For structs, and struct-like parts of anything fancier. struct Struct { size: u64, align: u64, packed: bool, fields: ~[ty::t] } /** * Convenience for `represent_type`. There should probably be more or * these, for places in trans where the `ty::t` isn't directly * available. */ pub fn represent_node(bcx: block, node: ast::node_id) -> @Repr { represent_type(bcx.ccx(), node_id_type(bcx, node)) } /// Decides how to represent a given type. pub fn represent_type(cx: @CrateContext, t: ty::t) -> @Repr { debug!("Representing: %s", ty_to_str(cx.tcx, t)); match cx.adt_reprs.find(&t) { Some(repr) => return *repr, None => { } } let repr = @represent_type_uncached(cx, t); debug!("Represented as: %?", repr) cx.adt_reprs.insert(t, repr); return repr; } fn represent_type_uncached(cx: @CrateContext, t: ty::t) -> Repr { match ty::get(t).sty { ty::ty_tup(ref elems) => { return Univariant(mk_struct(cx, *elems, false), false) } ty::ty_struct(def_id, ref substs) => { let fields = ty::lookup_struct_fields(cx.tcx, def_id); let ftys = do fields.map |field| { ty::lookup_field_type(cx.tcx, def_id, field.id, substs) }; let packed = ty::lookup_packed(cx.tcx, def_id); let dtor = ty::ty_dtor(cx.tcx, def_id).is_present(); let ftys = if dtor { ftys + [ty::mk_bool()] } else { ftys }; return Univariant(mk_struct(cx, ftys, packed), dtor) } ty::ty_enum(def_id, ref substs) => { struct Case { discr: int, tys: ~[ty::t] }; impl Case { fn is_zerolen(&self, cx: @CrateContext) -> bool { mk_struct(cx, self.tys, false).size == 0 } fn find_ptr(&self) -> Option { self.tys.position(|&ty| mono_data_classify(ty) == MonoNonNull) } } let cases = do ty::enum_variants(cx.tcx, def_id).map |vi| { let arg_tys = do vi.args.map |&raw_ty| { ty::subst(cx.tcx, substs, raw_ty) }; Case { discr: vi.disr_val, tys: arg_tys } }; if cases.len() == 0 { // Uninhabitable; represent as unit return Univariant(mk_struct(cx, ~[], false), false); } if cases.all(|c| c.tys.len() == 0) { // All bodies empty -> intlike let discrs = cases.map(|c| c.discr); return CEnum(discrs.min(), discrs.max()); } if cases.len() == 1 { // Equivalent to a struct/tuple/newtype. assert!(cases[0].discr == 0); return Univariant(mk_struct(cx, cases[0].tys, false), false) } // Since there's at least one // non-empty body, explicit discriminants should have // been rejected by a checker before this point. if !cases.alli(|i,c| c.discr == (i as int)) { cx.sess.bug(fmt!("non-C-like enum %s with specified \ discriminants", ty::item_path_str(cx.tcx, def_id))) } if cases.len() == 2 { let mut discr = 0; while discr < 2 { if cases[1 - discr].is_zerolen(cx) { match cases[discr].find_ptr() { Some(ptrfield) => { return NullablePointer { nndiscr: discr, nonnull: mk_struct(cx, cases[discr].tys, false), ptrfield: ptrfield, nullfields: copy cases[1 - discr].tys } } None => { } } } discr += 1; } } // The general case. let discr = ~[ty::mk_int()]; return General(cases.map(|c| mk_struct(cx, discr + c.tys, false))) } _ => cx.sess.bug(~"adt::represent_type called on non-ADT type") } } fn mk_struct(cx: @CrateContext, tys: &[ty::t], packed: bool) -> Struct { let lltys = tys.map(|&ty| type_of::sizing_type_of(cx, ty)); let llty_rec = T_struct(lltys, packed); Struct { size: machine::llsize_of_alloc(cx, llty_rec) /*bad*/as u64, align: machine::llalign_of_min(cx, llty_rec) /*bad*/as u64, packed: packed, fields: vec::from_slice(tys) } } /** * Returns the fields of a struct for the given representation. * All nominal types are LLVM structs, in order to be able to use * forward-declared opaque types to prevent circularity in `type_of`. */ pub fn fields_of(cx: @CrateContext, r: &Repr) -> ~[TypeRef] { generic_fields_of(cx, r, false) } /// Like `fields_of`, but for `type_of::sizing_type_of` (q.v.). pub fn sizing_fields_of(cx: @CrateContext, r: &Repr) -> ~[TypeRef] { generic_fields_of(cx, r, true) } fn generic_fields_of(cx: @CrateContext, r: &Repr, sizing: bool) -> ~[TypeRef] { match *r { CEnum(*) => ~[T_enum_discrim(cx)], Univariant(ref st, _dtor) => struct_llfields(cx, st, sizing), NullablePointer{ nonnull: ref st, _ } => struct_llfields(cx, st, sizing), General(ref sts) => { // To get "the" type of a general enum, we pick the case // with the largest alignment (so it will always align // correctly in containing structures) and pad it out. assert!(sts.len() >= 1); let mut most_aligned = None; let mut largest_align = 0; let mut largest_size = 0; for sts.each |st| { if largest_size < st.size { largest_size = st.size; } if largest_align < st.align { // Clang breaks ties by size; it is unclear if // that accomplishes anything important. largest_align = st.align; most_aligned = Some(st); } } let most_aligned = most_aligned.get(); let padding = largest_size - most_aligned.size; struct_llfields(cx, most_aligned, sizing) + [T_array(T_i8(), padding /*bad*/as uint)] } } } fn struct_llfields(cx: @CrateContext, st: &Struct, sizing: bool) -> ~[TypeRef] { if sizing { st.fields.map(|&ty| type_of::sizing_type_of(cx, ty)) } else { st.fields.map(|&ty| type_of::type_of(cx, ty)) } } /** * Obtain a representation of the discriminant sufficient to translate * destructuring; this may or may not involve the actual discriminant. * * This should ideally be less tightly tied to `_match`. */ pub fn trans_switch(bcx: block, r: &Repr, scrutinee: ValueRef) -> (_match::branch_kind, Option) { match *r { CEnum(*) | General(*) => { (_match::switch, Some(trans_get_discr(bcx, r, scrutinee))) } NullablePointer{ nonnull: ref nonnull, nndiscr, ptrfield, _ } => { (_match::switch, Some(nullable_bitdiscr(bcx, nonnull, nndiscr, ptrfield, scrutinee))) } Univariant(*) => { (_match::single, None) } } } /// Obtain the actual discriminant of a value. pub fn trans_get_discr(bcx: block, r: &Repr, scrutinee: ValueRef) -> ValueRef { match *r { CEnum(min, max) => load_discr(bcx, scrutinee, min, max), Univariant(*) => C_int(bcx.ccx(), 0), General(ref cases) => load_discr(bcx, scrutinee, 0, (cases.len() - 1) as int), NullablePointer{ nonnull: ref nonnull, nndiscr, ptrfield, _ } => { ZExt(bcx, nullable_bitdiscr(bcx, nonnull, nndiscr, ptrfield, scrutinee), T_enum_discrim(bcx.ccx())) } } } fn nullable_bitdiscr(bcx: block, nonnull: &Struct, nndiscr: int, ptrfield: uint, scrutinee: ValueRef) -> ValueRef { let cmp = if nndiscr == 0 { IntEQ } else { IntNE }; let llptr = Load(bcx, GEPi(bcx, scrutinee, [0, ptrfield])); let llptrty = type_of::type_of(bcx.ccx(), nonnull.fields[ptrfield]); ICmp(bcx, cmp, llptr, C_null(llptrty)) } /// Helper for cases where the discriminant is simply loaded. fn load_discr(bcx: block, scrutinee: ValueRef, min: int, max: int) -> ValueRef { let ptr = GEPi(bcx, scrutinee, [0, 0]); if max + 1 == min { // i.e., if the range is everything. The lo==hi case would be // rejected by the LLVM verifier (it would mean either an // empty set, which is impossible, or the entire range of the // type, which is pointless). Load(bcx, ptr) } else { // llvm::ConstantRange can deal with ranges that wrap around, // so an overflow on (max + 1) is fine. LoadRangeAssert(bcx, ptr, min as c_ulonglong, (max + 1) as c_ulonglong, /* signed: */ True) } } /** * Yield information about how to dispatch a case of the * discriminant-like value returned by `trans_switch`. * * This should ideally be less tightly tied to `_match`. */ pub fn trans_case(bcx: block, r: &Repr, discr: int) -> _match::opt_result { match *r { CEnum(*) => { _match::single_result(rslt(bcx, C_int(bcx.ccx(), discr))) } Univariant(*) => { bcx.ccx().sess.bug(~"no cases for univariants or structs") } General(*) => { _match::single_result(rslt(bcx, C_int(bcx.ccx(), discr))) } NullablePointer{ _ } => { assert!(discr == 0 || discr == 1); _match::single_result(rslt(bcx, C_i1(discr != 0))) } } } /** * Begin initializing a new value of the given case of the given * representation. The fields, if any, should then be initialized via * `trans_field_ptr`. */ pub fn trans_start_init(bcx: block, r: &Repr, val: ValueRef, discr: int) { match *r { CEnum(min, max) => { assert!(min <= discr && discr <= max); Store(bcx, C_int(bcx.ccx(), discr), GEPi(bcx, val, [0, 0])) } Univariant(ref st, true) => { assert!(discr == 0); Store(bcx, C_bool(true), GEPi(bcx, val, [0, st.fields.len() - 1])) } Univariant(*) => { assert!(discr == 0); } General(*) => { Store(bcx, C_int(bcx.ccx(), discr), GEPi(bcx, val, [0, 0])) } NullablePointer{ nonnull: ref nonnull, nndiscr, ptrfield, _ } => { if discr != nndiscr { let llptrptr = GEPi(bcx, val, [0, ptrfield]); let llptrty = type_of::type_of(bcx.ccx(), nonnull.fields[ptrfield]); Store(bcx, C_null(llptrty), llptrptr) } } } } /** * The number of fields in a given case; for use when obtaining this * information from the type or definition is less convenient. */ pub fn num_args(r: &Repr, discr: int) -> uint { match *r { CEnum(*) => 0, Univariant(ref st, dtor) => { assert!(discr == 0); st.fields.len() - (if dtor { 1 } else { 0 }) } General(ref cases) => cases[discr as uint].fields.len() - 1, NullablePointer{ nonnull: ref nonnull, nndiscr, nullfields: ref nullfields, _ } => { if discr == nndiscr { nonnull.fields.len() } else { nullfields.len() } } } } /// Access a field, at a point when the value's case is known. pub fn trans_field_ptr(bcx: block, r: &Repr, val: ValueRef, discr: int, ix: uint) -> ValueRef { // Note: if this ever needs to generate conditionals (e.g., if we // decide to do some kind of cdr-coding-like non-unique repr // someday), it will need to return a possibly-new bcx as well. match *r { CEnum(*) => { bcx.ccx().sess.bug(~"element access in C-like enum") } Univariant(ref st, _dtor) => { assert!(discr == 0); struct_field_ptr(bcx, st, val, ix, false) } General(ref cases) => { struct_field_ptr(bcx, &cases[discr as uint], val, ix + 1, true) } NullablePointer{ nonnull: ref nonnull, nullfields: ref nullfields, nndiscr, _ } => { if (discr == nndiscr) { struct_field_ptr(bcx, nonnull, val, ix, false) } else { // The unit-like case might have a nonzero number of unit-like fields. // (e.g., Result or Either with () as one side.) let llty = type_of::type_of(bcx.ccx(), nullfields[ix]); assert!(machine::llsize_of_alloc(bcx.ccx(), llty) == 0); // The contents of memory at this pointer can't matter, but use // the value that's "reasonable" in case of pointer comparison. PointerCast(bcx, val, T_ptr(llty)) } } } } fn struct_field_ptr(bcx: block, st: &Struct, val: ValueRef, ix: uint, needs_cast: bool) -> ValueRef { let ccx = bcx.ccx(); let val = if needs_cast { let real_llty = T_struct(st.fields.map( |&ty| type_of::type_of(ccx, ty)), st.packed); PointerCast(bcx, val, T_ptr(real_llty)) } else { val }; GEPi(bcx, val, [0, ix]) } /// Access the struct drop flag, if present. pub fn trans_drop_flag_ptr(bcx: block, r: &Repr, val: ValueRef) -> ValueRef { match *r { Univariant(ref st, true) => GEPi(bcx, val, [0, st.fields.len() - 1]), _ => bcx.ccx().sess.bug(~"tried to get drop flag of non-droppable \ type") } } /** * Construct a constant value, suitable for initializing a * GlobalVariable, given a case and constant values for its fields. * Note that this may have a different LLVM type (and different * alignment!) from the representation's `type_of`, so it needs a * pointer cast before use. * * The LLVM type system does not directly support unions, and only * pointers can be bitcast, so a constant (and, by extension, the * GlobalVariable initialized by it) will have a type that can vary * depending on which case of an enum it is. * * To understand the alignment situation, consider `enum E { V64(u64), * V32(u32, u32) }` on win32. The type has 8-byte alignment to * accommodate the u64, but `V32(x, y)` would have LLVM type `{i32, * i32, i32}`, which is 4-byte aligned. * * Currently the returned value has the same size as the type, but * this could be changed in the future to avoid allocating unnecessary * space after values of shorter-than-maximum cases. */ pub fn trans_const(ccx: @CrateContext, r: &Repr, discr: int, vals: &[ValueRef]) -> ValueRef { match *r { CEnum(min, max) => { assert!(vals.len() == 0); assert!(min <= discr && discr <= max); C_int(ccx, discr) } Univariant(ref st, _dro) => { assert!(discr == 0); C_struct(build_const_struct(ccx, st, vals)) } General(ref cases) => { let case = &cases[discr as uint]; let max_sz = cases.map(|s| s.size).max(); let contents = build_const_struct(ccx, case, ~[C_int(ccx, discr)] + vals); C_struct(contents + [padding(max_sz - case.size)]) } NullablePointer{ nonnull: ref nonnull, nndiscr, ptrfield, _ } => { if discr == nndiscr { C_struct(build_const_struct(ccx, nonnull, vals)) } else { assert!(vals.len() == 0); let vals = do nonnull.fields.mapi |i, &ty| { let llty = type_of::sizing_type_of(ccx, ty); if i == ptrfield { C_null(llty) } else { C_undef(llty) } }; C_struct(build_const_struct(ccx, nonnull, vals)) } } } } /** * Building structs is a little complicated, because we might need to * insert padding if a field's value is less aligned than its type. * * Continuing the example from `trans_const`, a value of type `(u32, * E)` should have the `E` at offset 8, but if that field's * initializer is 4-byte aligned then simply translating the tuple as * a two-element struct will locate it at offset 4, and accesses to it * will read the wrong memory. */ fn build_const_struct(ccx: @CrateContext, st: &Struct, vals: &[ValueRef]) -> ~[ValueRef] { assert!(vals.len() == st.fields.len()); let mut offset = 0; let mut cfields = ~[]; for st.fields.eachi |i, &ty| { let llty = type_of::sizing_type_of(ccx, ty); let type_align = machine::llalign_of_min(ccx, llty) /*bad*/as u64; let val_align = machine::llalign_of_min(ccx, val_ty(vals[i])) /*bad*/as u64; let target_offset = roundup(offset, type_align); offset = roundup(offset, val_align); if (offset != target_offset) { cfields.push(padding(target_offset - offset)); offset = target_offset; } let val = if is_undef(vals[i]) { let wrapped = C_struct([vals[i]]); assert!(!is_undef(wrapped)); wrapped } else { vals[i] }; cfields.push(val); } return cfields; } fn padding(size: u64) -> ValueRef { C_undef(T_array(T_i8(), size /*bad*/as uint)) } // XXX this utility routine should be somewhere more general #[always_inline] fn roundup(x: u64, a: u64) -> u64 { ((x + (a - 1)) / a) * a } /// Get the discriminant of a constant value. (Not currently used.) pub fn const_get_discrim(ccx: @CrateContext, r: &Repr, val: ValueRef) -> int { match *r { CEnum(*) => const_to_int(val) as int, Univariant(*) => 0, General(*) => const_to_int(const_get_elt(ccx, val, [0])) as int, NullablePointer{ nndiscr, ptrfield, _ } => { if is_null(const_struct_field(ccx, val, ptrfield)) { 1 - nndiscr } else { nndiscr } } } } /** * Extract a field of a constant value, as appropriate for its * representation. * * (Not to be confused with `common::const_get_elt`, which operates on * raw LLVM-level structs and arrays.) */ pub fn const_get_field(ccx: @CrateContext, r: &Repr, val: ValueRef, _discr: int, ix: uint) -> ValueRef { match *r { CEnum(*) => ccx.sess.bug(~"element access in C-like enum const"), Univariant(*) => const_struct_field(ccx, val, ix), General(*) => const_struct_field(ccx, val, ix + 1), NullablePointer{ _ } => const_struct_field(ccx, val, ix) } } /// Extract field of struct-like const, skipping our alignment padding. fn const_struct_field(ccx: @CrateContext, val: ValueRef, ix: uint) -> ValueRef { // Get the ix-th non-undef element of the struct. let mut real_ix = 0; // actual position in the struct let mut ix = ix; // logical index relative to real_ix let mut field; loop { loop { field = const_get_elt(ccx, val, [real_ix]); if !is_undef(field) { break; } real_ix = real_ix + 1; } if ix == 0 { return field; } ix = ix - 1; real_ix = real_ix + 1; } } /// Is it safe to bitcast a value to the one field of its one variant? pub fn is_newtypeish(r: &Repr) -> bool { match *r { Univariant(ref st, false) => st.fields.len() == 1, _ => false } }