// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! An interface for numeric types use cmp::{Eq, Ord}; #[cfg(stage0)] use ops::{Add, Sub, Mul, Neg}; #[cfg(stage0)] use Quot = ops::Div; #[cfg(stage0)] use Rem = ops::Modulo; #[cfg(not(stage0))] use ops::{Add, Sub, Mul, Quot, Rem, Neg}; use option::Option; use kinds::Copy; pub mod strconv; pub trait Num: Eq + Zero + One + Neg + Add + Sub + Mul + Quot + Rem {} pub trait IntConvertible { fn to_int(&self) -> int; fn from_int(n: int) -> Self; } pub trait Zero { fn zero() -> Self; // FIXME (#5527): This should be an associated constant fn is_zero(&self) -> bool; } pub trait One { fn one() -> Self; // FIXME (#5527): This should be an associated constant } pub trait Signed: Num + Neg { fn abs(&self) -> Self; fn signum(&self) -> Self; fn is_positive(&self) -> bool; fn is_negative(&self) -> bool; } pub trait Unsigned: Num {} // This should be moved into the default implementation for Signed::abs pub fn abs>(v: T) -> T { if v < Zero::zero() { v.neg() } else { v } } pub trait Integer: Num + Ord + Quot + Rem { fn div(&self, other: &Self) -> Self; fn modulo(&self, other: &Self) -> Self; fn div_mod(&self, other: &Self) -> (Self,Self); fn quot_rem(&self, other: &Self) -> (Self,Self); fn gcd(&self, other: &Self) -> Self; fn lcm(&self, other: &Self) -> Self; fn divisible_by(&self, other: &Self) -> bool; fn is_even(&self) -> bool; fn is_odd(&self) -> bool; } pub trait Round { fn floor(&self) -> Self; fn ceil(&self) -> Self; fn round(&self) -> Self; fn trunc(&self) -> Self; fn fract(&self) -> Self; } pub trait Fractional: Num + Ord + Round + Quot { fn recip(&self) -> Self; } pub trait Real: Signed + Fractional { // FIXME (#5527): usages of `int` should be replaced with an associated // integer type once these are implemented // Common Constants // FIXME (#5527): These should be associated constants fn pi() -> Self; fn two_pi() -> Self; fn frac_pi_2() -> Self; fn frac_pi_3() -> Self; fn frac_pi_4() -> Self; fn frac_pi_6() -> Self; fn frac_pi_8() -> Self; fn frac_1_pi() -> Self; fn frac_2_pi() -> Self; fn frac_2_sqrtpi() -> Self; fn sqrt2() -> Self; fn frac_1_sqrt2() -> Self; fn e() -> Self; fn log2_e() -> Self; fn log10_e() -> Self; fn log_2() -> Self; fn log_10() -> Self; // Exponential functions fn pow(&self, n: Self) -> Self; fn exp(&self) -> Self; fn exp2(&self) -> Self; fn expm1(&self) -> Self; fn ldexp(&self, n: int) -> Self; fn log(&self) -> Self; fn log2(&self) -> Self; fn log10(&self) -> Self; fn log_radix(&self) -> Self; fn ilog_radix(&self) -> int; fn sqrt(&self) -> Self; fn rsqrt(&self) -> Self; fn cbrt(&self) -> Self; // Angular conversions fn to_degrees(&self) -> Self; fn to_radians(&self) -> Self; // Triganomic functions fn hypot(&self, other: Self) -> Self; fn sin(&self) -> Self; fn cos(&self) -> Self; fn tan(&self) -> Self; // Inverse triganomic functions fn asin(&self) -> Self; fn acos(&self) -> Self; fn atan(&self) -> Self; fn atan2(&self, other: Self) -> Self; // Hyperbolic triganomic functions fn sinh(&self) -> Self; fn cosh(&self) -> Self; fn tanh(&self) -> Self; } /// Methods that are harder to implement and not commonly used. pub trait RealExt: Real { // FIXME (#5527): usages of `int` should be replaced with an associated // integer type once these are implemented // Gamma functions fn lgamma(&self) -> (int, Self); fn tgamma(&self) -> Self; // Bessel functions fn j0(&self) -> Self; fn j1(&self) -> Self; fn jn(&self, n: int) -> Self; fn y0(&self) -> Self; fn y1(&self) -> Self; fn yn(&self, n: int) -> Self; } /** * Cast from one machine scalar to another * * # Example * * ~~~ * let twenty: f32 = num::cast(0x14); * assert_eq!(twenty, 20f32); * ~~~ */ #[inline(always)] pub fn cast(n: T) -> U { NumCast::from(n) } /** * An interface for casting between machine scalars */ pub trait NumCast { fn from(n: T) -> Self; fn to_u8(&self) -> u8; fn to_u16(&self) -> u16; fn to_u32(&self) -> u32; fn to_u64(&self) -> u64; fn to_uint(&self) -> uint; fn to_i8(&self) -> i8; fn to_i16(&self) -> i16; fn to_i32(&self) -> i32; fn to_i64(&self) -> i64; fn to_int(&self) -> int; fn to_f32(&self) -> f32; fn to_f64(&self) -> f64; fn to_float(&self) -> float; } macro_rules! impl_num_cast( ($T:ty, $conv:ident) => ( impl NumCast for $T { #[inline(always)] fn from(n: N) -> $T { // `$conv` could be generated using `concat_idents!`, but that // macro seems to be broken at the moment n.$conv() } #[inline(always)] fn to_u8(&self) -> u8 { *self as u8 } #[inline(always)] fn to_u16(&self) -> u16 { *self as u16 } #[inline(always)] fn to_u32(&self) -> u32 { *self as u32 } #[inline(always)] fn to_u64(&self) -> u64 { *self as u64 } #[inline(always)] fn to_uint(&self) -> uint { *self as uint } #[inline(always)] fn to_i8(&self) -> i8 { *self as i8 } #[inline(always)] fn to_i16(&self) -> i16 { *self as i16 } #[inline(always)] fn to_i32(&self) -> i32 { *self as i32 } #[inline(always)] fn to_i64(&self) -> i64 { *self as i64 } #[inline(always)] fn to_int(&self) -> int { *self as int } #[inline(always)] fn to_f32(&self) -> f32 { *self as f32 } #[inline(always)] fn to_f64(&self) -> f64 { *self as f64 } #[inline(always)] fn to_float(&self) -> float { *self as float } } ) ) impl_num_cast!(u8, to_u8) impl_num_cast!(u16, to_u16) impl_num_cast!(u32, to_u32) impl_num_cast!(u64, to_u64) impl_num_cast!(uint, to_uint) impl_num_cast!(i8, to_i8) impl_num_cast!(i16, to_i16) impl_num_cast!(i32, to_i32) impl_num_cast!(i64, to_i64) impl_num_cast!(int, to_int) impl_num_cast!(f32, to_f32) impl_num_cast!(f64, to_f64) impl_num_cast!(float, to_float) pub trait ToStrRadix { pub fn to_str_radix(&self, radix: uint) -> ~str; } pub trait FromStrRadix { pub fn from_str_radix(str: &str, radix: uint) -> Option; } // Generic math functions: /** * Calculates a power to a given radix, optimized for uint `pow` and `radix`. * * Returns `radix^pow` as `T`. * * Note: * Also returns `1` for `0^0`, despite that technically being an * undefined number. The reason for this is twofold: * - If code written to use this function cares about that special case, it's * probably going to catch it before making the call. * - If code written to use this function doesn't care about it, it's * probably assuming that `x^0` always equals `1`. */ pub fn pow_with_uint+Mul>( radix: uint, pow: uint) -> T { let _0: T = Zero::zero(); let _1: T = One::one(); if pow == 0u { return _1; } if radix == 0u { return _0; } let mut my_pow = pow; let mut total = _1; let mut multiplier = cast(radix as int); while (my_pow > 0u) { if my_pow % 2u == 1u { total *= multiplier; } my_pow /= 2u; multiplier *= multiplier; } total } /// Helper function for testing numeric operations #[cfg(stage0,test)] pub fn test_num(ten: T, two: T) { assert_eq!(ten.add(&two), cast(12)); assert_eq!(ten.sub(&two), cast(8)); assert_eq!(ten.mul(&two), cast(20)); assert_eq!(ten.div(&two), cast(5)); assert_eq!(ten.modulo(&two), cast(0)); assert_eq!(ten.add(&two), ten + two); assert_eq!(ten.sub(&two), ten - two); assert_eq!(ten.mul(&two), ten * two); assert_eq!(ten.div(&two), ten / two); assert_eq!(ten.modulo(&two), ten % two); } #[cfg(stage1,test)] #[cfg(stage2,test)] #[cfg(stage3,test)] pub fn test_num(ten: T, two: T) { assert_eq!(ten.add(&two), cast(12)); assert_eq!(ten.sub(&two), cast(8)); assert_eq!(ten.mul(&two), cast(20)); assert_eq!(ten.quot(&two), cast(5)); assert_eq!(ten.rem(&two), cast(0)); assert_eq!(ten.add(&two), ten + two); assert_eq!(ten.sub(&two), ten - two); assert_eq!(ten.mul(&two), ten * two); assert_eq!(ten.quot(&two), ten / two); assert_eq!(ten.rem(&two), ten % two); } macro_rules! test_cast_20( ($_20:expr) => ({ let _20 = $_20; assert_eq!(20u, _20.to_uint()); assert_eq!(20u8, _20.to_u8()); assert_eq!(20u16, _20.to_u16()); assert_eq!(20u32, _20.to_u32()); assert_eq!(20u64, _20.to_u64()); assert_eq!(20i, _20.to_int()); assert_eq!(20i8, _20.to_i8()); assert_eq!(20i16, _20.to_i16()); assert_eq!(20i32, _20.to_i32()); assert_eq!(20i64, _20.to_i64()); assert_eq!(20f, _20.to_float()); assert_eq!(20f32, _20.to_f32()); assert_eq!(20f64, _20.to_f64()); assert_eq!(_20, NumCast::from(20u)); assert_eq!(_20, NumCast::from(20u8)); assert_eq!(_20, NumCast::from(20u16)); assert_eq!(_20, NumCast::from(20u32)); assert_eq!(_20, NumCast::from(20u64)); assert_eq!(_20, NumCast::from(20i)); assert_eq!(_20, NumCast::from(20i8)); assert_eq!(_20, NumCast::from(20i16)); assert_eq!(_20, NumCast::from(20i32)); assert_eq!(_20, NumCast::from(20i64)); assert_eq!(_20, NumCast::from(20f)); assert_eq!(_20, NumCast::from(20f32)); assert_eq!(_20, NumCast::from(20f64)); assert_eq!(_20, cast(20u)); assert_eq!(_20, cast(20u8)); assert_eq!(_20, cast(20u16)); assert_eq!(_20, cast(20u32)); assert_eq!(_20, cast(20u64)); assert_eq!(_20, cast(20i)); assert_eq!(_20, cast(20i8)); assert_eq!(_20, cast(20i16)); assert_eq!(_20, cast(20i32)); assert_eq!(_20, cast(20i64)); assert_eq!(_20, cast(20f)); assert_eq!(_20, cast(20f32)); assert_eq!(_20, cast(20f64)); }) ) #[test] fn test_u8_cast() { test_cast_20!(20u8) } #[test] fn test_u16_cast() { test_cast_20!(20u16) } #[test] fn test_u32_cast() { test_cast_20!(20u32) } #[test] fn test_u64_cast() { test_cast_20!(20u64) } #[test] fn test_uint_cast() { test_cast_20!(20u) } #[test] fn test_i8_cast() { test_cast_20!(20i8) } #[test] fn test_i16_cast() { test_cast_20!(20i16) } #[test] fn test_i32_cast() { test_cast_20!(20i32) } #[test] fn test_i64_cast() { test_cast_20!(20i64) } #[test] fn test_int_cast() { test_cast_20!(20i) } #[test] fn test_f32_cast() { test_cast_20!(20f32) } #[test] fn test_f64_cast() { test_cast_20!(20f64) } #[test] fn test_float_cast() { test_cast_20!(20f) }