// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Operations and constants for `float` // Even though this module exports everything defined in it, // because it contains re-exports, we also have to explicitly // export locally defined things. That's a bit annoying. // export when m_float == c_double // PORT this must match in width according to architecture use from_str; use libc::c_int; use num::{Zero, One, strconv}; use prelude::*; pub use f64::{add, sub, mul, quot, rem, lt, le, eq, ne, ge, gt}; pub use f64::logarithm; pub use f64::{acos, asin, atan2, cbrt, ceil, copysign, cosh, floor}; pub use f64::{erf, erfc, exp, expm1, exp2, abs_sub}; pub use f64::{mul_add, fmax, fmin, nextafter, frexp, hypot, ldexp}; pub use f64::{lgamma, ln, log_radix, ln1p, log10, log2, ilog_radix}; pub use f64::{modf, pow, powi, round, sinh, tanh, tgamma, trunc}; pub use f64::{j0, j1, jn, y0, y1, yn}; pub static NaN: float = 0.0/0.0; pub static infinity: float = 1.0/0.0; pub static neg_infinity: float = -1.0/0.0; /* Module: consts */ pub mod consts { // FIXME (requires Issue #1433 to fix): replace with mathematical // staticants from cmath. /// Archimedes' staticant pub static pi: float = 3.14159265358979323846264338327950288; /// pi/2.0 pub static frac_pi_2: float = 1.57079632679489661923132169163975144; /// pi/4.0 pub static frac_pi_4: float = 0.785398163397448309615660845819875721; /// 1.0/pi pub static frac_1_pi: float = 0.318309886183790671537767526745028724; /// 2.0/pi pub static frac_2_pi: float = 0.636619772367581343075535053490057448; /// 2.0/sqrt(pi) pub static frac_2_sqrtpi: float = 1.12837916709551257389615890312154517; /// sqrt(2.0) pub static sqrt2: float = 1.41421356237309504880168872420969808; /// 1.0/sqrt(2.0) pub static frac_1_sqrt2: float = 0.707106781186547524400844362104849039; /// Euler's number pub static e: float = 2.71828182845904523536028747135266250; /// log2(e) pub static log2_e: float = 1.44269504088896340735992468100189214; /// log10(e) pub static log10_e: float = 0.434294481903251827651128918916605082; /// ln(2.0) pub static ln_2: float = 0.693147180559945309417232121458176568; /// ln(10.0) pub static ln_10: float = 2.30258509299404568401799145468436421; } /* * Section: String Conversions */ /** * Converts a float to a string * * # Arguments * * * num - The float value */ #[inline(always)] pub fn to_str(num: float) -> ~str { let (r, _) = strconv::to_str_common( &num, 10u, true, strconv::SignNeg, strconv::DigAll); r } /** * Converts a float to a string in hexadecimal format * * # Arguments * * * num - The float value */ #[inline(always)] pub fn to_str_hex(num: float) -> ~str { let (r, _) = strconv::to_str_common( &num, 16u, true, strconv::SignNeg, strconv::DigAll); r } /** * Converts a float to a string in a given radix * * # Arguments * * * num - The float value * * radix - The base to use * * # Failure * * Fails if called on a special value like `inf`, `-inf` or `NaN` due to * possible misinterpretation of the result at higher bases. If those values * are expected, use `to_str_radix_special()` instead. */ #[inline(always)] pub fn to_str_radix(num: float, radix: uint) -> ~str { let (r, special) = strconv::to_str_common( &num, radix, true, strconv::SignNeg, strconv::DigAll); if special { fail!(~"number has a special value, \ try to_str_radix_special() if those are expected") } r } /** * Converts a float to a string in a given radix, and a flag indicating * whether it's a special value * * # Arguments * * * num - The float value * * radix - The base to use */ #[inline(always)] pub fn to_str_radix_special(num: float, radix: uint) -> (~str, bool) { strconv::to_str_common(&num, radix, true, strconv::SignNeg, strconv::DigAll) } /** * Converts a float to a string with exactly the number of * provided significant digits * * # Arguments * * * num - The float value * * digits - The number of significant digits */ #[inline(always)] pub fn to_str_exact(num: float, digits: uint) -> ~str { let (r, _) = strconv::to_str_common( &num, 10u, true, strconv::SignNeg, strconv::DigExact(digits)); r } /** * Converts a float to a string with a maximum number of * significant digits * * # Arguments * * * num - The float value * * digits - The number of significant digits */ #[inline(always)] pub fn to_str_digits(num: float, digits: uint) -> ~str { let (r, _) = strconv::to_str_common( &num, 10u, true, strconv::SignNeg, strconv::DigMax(digits)); r } impl to_str::ToStr for float { #[inline(always)] fn to_str(&self) -> ~str { to_str_digits(*self, 8) } } impl num::ToStrRadix for float { #[inline(always)] fn to_str_radix(&self, radix: uint) -> ~str { to_str_radix(*self, radix) } } /** * Convert a string in base 10 to a float. * Accepts a optional decimal exponent. * * This function accepts strings such as * * * '3.14' * * '+3.14', equivalent to '3.14' * * '-3.14' * * '2.5E10', or equivalently, '2.5e10' * * '2.5E-10' * * '.' (understood as 0) * * '5.' * * '.5', or, equivalently, '0.5' * * '+inf', 'inf', '-inf', 'NaN' * * Leading and trailing whitespace represent an error. * * # Arguments * * * num - A string * * # Return value * * `none` if the string did not represent a valid number. Otherwise, * `Some(n)` where `n` is the floating-point number represented by `num`. */ #[inline(always)] pub fn from_str(num: &str) -> Option { strconv::from_str_common(num, 10u, true, true, true, strconv::ExpDec, false, false) } /** * Convert a string in base 16 to a float. * Accepts a optional binary exponent. * * This function accepts strings such as * * * 'a4.fe' * * '+a4.fe', equivalent to 'a4.fe' * * '-a4.fe' * * '2b.aP128', or equivalently, '2b.ap128' * * '2b.aP-128' * * '.' (understood as 0) * * 'c.' * * '.c', or, equivalently, '0.c' * * '+inf', 'inf', '-inf', 'NaN' * * Leading and trailing whitespace represent an error. * * # Arguments * * * num - A string * * # Return value * * `none` if the string did not represent a valid number. Otherwise, * `Some(n)` where `n` is the floating-point number represented by `[num]`. */ #[inline(always)] pub fn from_str_hex(num: &str) -> Option { strconv::from_str_common(num, 16u, true, true, true, strconv::ExpBin, false, false) } /** * Convert a string in an given base to a float. * * Due to possible conflicts, this function does **not** accept * the special values `inf`, `-inf`, `+inf` and `NaN`, **nor** * does it recognize exponents of any kind. * * Leading and trailing whitespace represent an error. * * # Arguments * * * num - A string * * radix - The base to use. Must lie in the range [2 .. 36] * * # Return value * * `none` if the string did not represent a valid number. Otherwise, * `Some(n)` where `n` is the floating-point number represented by `num`. */ #[inline(always)] pub fn from_str_radix(num: &str, radix: uint) -> Option { strconv::from_str_common(num, radix, true, true, false, strconv::ExpNone, false, false) } impl from_str::FromStr for float { #[inline(always)] fn from_str(val: &str) -> Option { from_str(val) } } impl num::FromStrRadix for float { #[inline(always)] fn from_str_radix(val: &str, radix: uint) -> Option { from_str_radix(val, radix) } } /** * Section: Arithmetics */ /** * Compute the exponentiation of an integer by another integer as a float * * # Arguments * * * x - The base * * pow - The exponent * * # Return value * * `NaN` if both `x` and `pow` are `0u`, otherwise `x^pow` */ pub fn pow_with_uint(base: uint, pow: uint) -> float { if base == 0u { if pow == 0u { return NaN as float; } return 0.; } let mut my_pow = pow; let mut total = 1f; let mut multiplier = base as float; while (my_pow > 0u) { if my_pow % 2u == 1u { total = total * multiplier; } my_pow /= 2u; multiplier *= multiplier; } return total; } #[inline(always)] pub fn is_infinite(x: float) -> bool { f64::is_infinite(x as f64) } #[inline(always)] pub fn is_finite(x: float) -> bool { f64::is_finite(x as f64) } #[inline(always)] pub fn is_NaN(x: float) -> bool { f64::is_NaN(x as f64) } #[inline(always)] pub fn abs(x: float) -> float { f64::abs(x as f64) as float } #[inline(always)] pub fn sqrt(x: float) -> float { f64::sqrt(x as f64) as float } #[inline(always)] pub fn atan(x: float) -> float { f64::atan(x as f64) as float } #[inline(always)] pub fn sin(x: float) -> float { f64::sin(x as f64) as float } #[inline(always)] pub fn cos(x: float) -> float { f64::cos(x as f64) as float } #[inline(always)] pub fn tan(x: float) -> float { f64::tan(x as f64) as float } impl Num for float {} #[cfg(notest)] impl Eq for float { #[inline(always)] fn eq(&self, other: &float) -> bool { (*self) == (*other) } #[inline(always)] fn ne(&self, other: &float) -> bool { (*self) != (*other) } } #[cfg(notest)] impl Ord for float { #[inline(always)] fn lt(&self, other: &float) -> bool { (*self) < (*other) } #[inline(always)] fn le(&self, other: &float) -> bool { (*self) <= (*other) } #[inline(always)] fn ge(&self, other: &float) -> bool { (*self) >= (*other) } #[inline(always)] fn gt(&self, other: &float) -> bool { (*self) > (*other) } } impl Zero for float { #[inline(always)] fn zero() -> float { 0.0 } /// Returns true if the number is equal to either `0.0` or `-0.0` #[inline(always)] fn is_zero(&self) -> bool { *self == 0.0 || *self == -0.0 } } impl One for float { #[inline(always)] fn one() -> float { 1.0 } } impl Round for float { /// Round half-way cases toward `neg_infinity` #[inline(always)] fn floor(&self) -> float { floor(*self as f64) as float } /// Round half-way cases toward `infinity` #[inline(always)] fn ceil(&self) -> float { ceil(*self as f64) as float } /// Round half-way cases away from `0.0` #[inline(always)] fn round(&self) -> float { round(*self as f64) as float } /// The integer part of the number (rounds towards `0.0`) #[inline(always)] fn trunc(&self) -> float { trunc(*self as f64) as float } /// /// The fractional part of the number, satisfying: /// /// ~~~ /// assert!(x == trunc(x) + fract(x)) /// ~~~ /// #[inline(always)] fn fract(&self) -> float { *self - self.trunc() } } impl Fractional for float { /// The reciprocal (multiplicative inverse) of the number #[inline(always)] fn recip(&self) -> float { 1.0 / *self } } impl Real for float { /// Archimedes' constant #[inline(always)] fn pi() -> float { 3.14159265358979323846264338327950288 } /// 2.0 * pi #[inline(always)] fn two_pi() -> float { 6.28318530717958647692528676655900576 } /// pi / 2.0 #[inline(always)] fn frac_pi_2() -> float { 1.57079632679489661923132169163975144 } /// pi / 3.0 #[inline(always)] fn frac_pi_3() -> float { 1.04719755119659774615421446109316763 } /// pi / 4.0 #[inline(always)] fn frac_pi_4() -> float { 0.785398163397448309615660845819875721 } /// pi / 6.0 #[inline(always)] fn frac_pi_6() -> float { 0.52359877559829887307710723054658381 } /// pi / 8.0 #[inline(always)] fn frac_pi_8() -> float { 0.39269908169872415480783042290993786 } /// 1.0 / pi #[inline(always)] fn frac_1_pi() -> float { 0.318309886183790671537767526745028724 } /// 2.0 / pi #[inline(always)] fn frac_2_pi() -> float { 0.636619772367581343075535053490057448 } /// 2 .0/ sqrt(pi) #[inline(always)] fn frac_2_sqrtpi() -> float { 1.12837916709551257389615890312154517 } /// sqrt(2.0) #[inline(always)] fn sqrt2() -> float { 1.41421356237309504880168872420969808 } /// 1.0 / sqrt(2.0) #[inline(always)] fn frac_1_sqrt2() -> float { 0.707106781186547524400844362104849039 } /// Euler's number #[inline(always)] fn e() -> float { 2.71828182845904523536028747135266250 } /// log2(e) #[inline(always)] fn log2_e() -> float { 1.44269504088896340735992468100189214 } /// log10(e) #[inline(always)] fn log10_e() -> float { 0.434294481903251827651128918916605082 } /// log(2.0) #[inline(always)] fn log_2() -> float { 0.693147180559945309417232121458176568 } /// log(10.0) #[inline(always)] fn log_10() -> float { 2.30258509299404568401799145468436421 } #[inline(always)] fn pow(&self, n: float) -> float { pow(*self as f64, n as f64) as float } #[inline(always)] fn exp(&self) -> float { exp(*self as f64) as float } #[inline(always)] fn exp2(&self) -> float { exp2(*self as f64) as float } #[inline(always)] fn expm1(&self) -> float { expm1(*self as f64) as float } #[inline(always)] fn ldexp(&self, n: int) -> float { ldexp(*self as f64, n as c_int) as float } #[inline(always)] fn log(&self) -> float { ln(*self as f64) as float } #[inline(always)] fn log2(&self) -> float { log2(*self as f64) as float } #[inline(always)] fn log10(&self) -> float { log10(*self as f64) as float } #[inline(always)] fn log_radix(&self) -> float { log_radix(*self as f64) as float } #[inline(always)] fn ilog_radix(&self) -> int { ilog_radix(*self as f64) as int } #[inline(always)] fn sqrt(&self) -> float { sqrt(*self) } #[inline(always)] fn rsqrt(&self) -> float { self.sqrt().recip() } #[inline(always)] fn cbrt(&self) -> float { cbrt(*self as f64) as float } /// Converts to degrees, assuming the number is in radians #[inline(always)] fn to_degrees(&self) -> float { *self * (180.0 / Real::pi::()) } /// Converts to radians, assuming the number is in degrees #[inline(always)] fn to_radians(&self) -> float { *self * (Real::pi::() / 180.0) } #[inline(always)] fn hypot(&self, other: float) -> float { hypot(*self as f64, other as f64) as float } #[inline(always)] fn sin(&self) -> float { sin(*self) } #[inline(always)] fn cos(&self) -> float { cos(*self) } #[inline(always)] fn tan(&self) -> float { tan(*self) } #[inline(always)] fn asin(&self) -> float { asin(*self as f64) as float } #[inline(always)] fn acos(&self) -> float { acos(*self as f64) as float } #[inline(always)] fn atan(&self) -> float { atan(*self) } #[inline(always)] fn atan2(&self, other: float) -> float { atan2(*self as f64, other as f64) as float } #[inline(always)] fn sinh(&self) -> float { sinh(*self as f64) as float } #[inline(always)] fn cosh(&self) -> float { cosh(*self as f64) as float } #[inline(always)] fn tanh(&self) -> float { tanh(*self as f64) as float } } impl RealExt for float { #[inline(always)] fn lgamma(&self) -> (int, float) { let mut sign = 0; let result = lgamma(*self as f64, &mut sign); (sign as int, result as float) } #[inline(always)] fn tgamma(&self) -> float { tgamma(*self as f64) as float } #[inline(always)] fn j0(&self) -> float { j0(*self as f64) as float } #[inline(always)] fn j1(&self) -> float { j1(*self as f64) as float } #[inline(always)] fn jn(&self, n: int) -> float { jn(n as c_int, *self as f64) as float } #[inline(always)] fn y0(&self) -> float { y0(*self as f64) as float } #[inline(always)] fn y1(&self) -> float { y1(*self as f64) as float } #[inline(always)] fn yn(&self, n: int) -> float { yn(n as c_int, *self as f64) as float } } #[cfg(notest)] impl Add for float { #[inline(always)] fn add(&self, other: &float) -> float { *self + *other } } #[cfg(notest)] impl Sub for float { #[inline(always)] fn sub(&self, other: &float) -> float { *self - *other } } #[cfg(notest)] impl Mul for float { #[inline(always)] fn mul(&self, other: &float) -> float { *self * *other } } #[cfg(stage0,notest)] impl Div for float { #[inline(always)] fn div(&self, other: &float) -> float { *self / *other } } #[cfg(not(stage0),notest)] impl Quot for float { #[inline(always)] fn quot(&self, other: &float) -> float { *self / *other } } #[cfg(stage0,notest)] impl Modulo for float { #[inline(always)] fn modulo(&self, other: &float) -> float { *self % *other } } #[cfg(not(stage0),notest)] impl Rem for float { #[inline(always)] fn rem(&self, other: &float) -> float { *self % *other } } #[cfg(notest)] impl Neg for float { #[inline(always)] fn neg(&self) -> float { -*self } } impl Signed for float { /// Computes the absolute value. Returns `NaN` if the number is `NaN`. #[inline(always)] fn abs(&self) -> float { abs(*self) } /** * # Returns * * - `1.0` if the number is positive, `+0.0` or `infinity` * - `-1.0` if the number is negative, `-0.0` or `neg_infinity` * - `NaN` if the number is NaN */ #[inline(always)] fn signum(&self) -> float { if is_NaN(*self) { NaN } else { f64::copysign(1.0, *self as f64) as float } } /// Returns `true` if the number is positive, including `+0.0` and `infinity` #[inline(always)] fn is_positive(&self) -> bool { *self > 0.0 || (1.0 / *self) == infinity } /// Returns `true` if the number is negative, including `-0.0` and `neg_infinity` #[inline(always)] fn is_negative(&self) -> bool { *self < 0.0 || (1.0 / *self) == neg_infinity } } #[cfg(test)] mod tests { use super::*; use prelude::*; macro_rules! assert_fuzzy_eq( ($a:expr, $b:expr) => ({ let a = $a, b = $b; if !((a - b).abs() < 1.0e-6) { fail!(fmt!("The values were not approximately equal. Found: %? and %?", a, b)); } }) ) #[test] fn test_num() { num::test_num(10f, 2f); } #[test] fn test_floor() { assert_fuzzy_eq!(1.0f.floor(), 1.0f); assert_fuzzy_eq!(1.3f.floor(), 1.0f); assert_fuzzy_eq!(1.5f.floor(), 1.0f); assert_fuzzy_eq!(1.7f.floor(), 1.0f); assert_fuzzy_eq!(0.0f.floor(), 0.0f); assert_fuzzy_eq!((-0.0f).floor(), -0.0f); assert_fuzzy_eq!((-1.0f).floor(), -1.0f); assert_fuzzy_eq!((-1.3f).floor(), -2.0f); assert_fuzzy_eq!((-1.5f).floor(), -2.0f); assert_fuzzy_eq!((-1.7f).floor(), -2.0f); } #[test] fn test_ceil() { assert_fuzzy_eq!(1.0f.ceil(), 1.0f); assert_fuzzy_eq!(1.3f.ceil(), 2.0f); assert_fuzzy_eq!(1.5f.ceil(), 2.0f); assert_fuzzy_eq!(1.7f.ceil(), 2.0f); assert_fuzzy_eq!(0.0f.ceil(), 0.0f); assert_fuzzy_eq!((-0.0f).ceil(), -0.0f); assert_fuzzy_eq!((-1.0f).ceil(), -1.0f); assert_fuzzy_eq!((-1.3f).ceil(), -1.0f); assert_fuzzy_eq!((-1.5f).ceil(), -1.0f); assert_fuzzy_eq!((-1.7f).ceil(), -1.0f); } #[test] fn test_round() { assert_fuzzy_eq!(1.0f.round(), 1.0f); assert_fuzzy_eq!(1.3f.round(), 1.0f); assert_fuzzy_eq!(1.5f.round(), 2.0f); assert_fuzzy_eq!(1.7f.round(), 2.0f); assert_fuzzy_eq!(0.0f.round(), 0.0f); assert_fuzzy_eq!((-0.0f).round(), -0.0f); assert_fuzzy_eq!((-1.0f).round(), -1.0f); assert_fuzzy_eq!((-1.3f).round(), -1.0f); assert_fuzzy_eq!((-1.5f).round(), -2.0f); assert_fuzzy_eq!((-1.7f).round(), -2.0f); } #[test] fn test_trunc() { assert_fuzzy_eq!(1.0f.trunc(), 1.0f); assert_fuzzy_eq!(1.3f.trunc(), 1.0f); assert_fuzzy_eq!(1.5f.trunc(), 1.0f); assert_fuzzy_eq!(1.7f.trunc(), 1.0f); assert_fuzzy_eq!(0.0f.trunc(), 0.0f); assert_fuzzy_eq!((-0.0f).trunc(), -0.0f); assert_fuzzy_eq!((-1.0f).trunc(), -1.0f); assert_fuzzy_eq!((-1.3f).trunc(), -1.0f); assert_fuzzy_eq!((-1.5f).trunc(), -1.0f); assert_fuzzy_eq!((-1.7f).trunc(), -1.0f); } #[test] fn test_fract() { assert_fuzzy_eq!(1.0f.fract(), 0.0f); assert_fuzzy_eq!(1.3f.fract(), 0.3f); assert_fuzzy_eq!(1.5f.fract(), 0.5f); assert_fuzzy_eq!(1.7f.fract(), 0.7f); assert_fuzzy_eq!(0.0f.fract(), 0.0f); assert_fuzzy_eq!((-0.0f).fract(), -0.0f); assert_fuzzy_eq!((-1.0f).fract(), -0.0f); assert_fuzzy_eq!((-1.3f).fract(), -0.3f); assert_fuzzy_eq!((-1.5f).fract(), -0.5f); assert_fuzzy_eq!((-1.7f).fract(), -0.7f); } #[test] fn test_real_consts() { assert_fuzzy_eq!(Real::two_pi::(), 2f * Real::pi::()); assert_fuzzy_eq!(Real::frac_pi_2::(), Real::pi::() / 2f); assert_fuzzy_eq!(Real::frac_pi_3::(), Real::pi::() / 3f); assert_fuzzy_eq!(Real::frac_pi_4::(), Real::pi::() / 4f); assert_fuzzy_eq!(Real::frac_pi_6::(), Real::pi::() / 6f); assert_fuzzy_eq!(Real::frac_pi_8::(), Real::pi::() / 8f); assert_fuzzy_eq!(Real::frac_1_pi::(), 1f / Real::pi::()); assert_fuzzy_eq!(Real::frac_2_pi::(), 2f / Real::pi::()); assert_fuzzy_eq!(Real::frac_2_sqrtpi::(), 2f / Real::pi::().sqrt()); assert_fuzzy_eq!(Real::sqrt2::(), 2f.sqrt()); assert_fuzzy_eq!(Real::frac_1_sqrt2::(), 1f / 2f.sqrt()); assert_fuzzy_eq!(Real::log2_e::(), Real::e::().log2()); assert_fuzzy_eq!(Real::log10_e::(), Real::e::().log10()); assert_fuzzy_eq!(Real::log_2::(), 2f.log()); assert_fuzzy_eq!(Real::log_10::(), 10f.log()); } #[test] pub fn test_signed() { assert_eq!(infinity.abs(), infinity); assert_eq!(1f.abs(), 1f); assert_eq!(0f.abs(), 0f); assert_eq!((-0f).abs(), 0f); assert_eq!((-1f).abs(), 1f); assert_eq!(neg_infinity.abs(), infinity); assert_eq!((1f/neg_infinity).abs(), 0f); assert!(is_NaN(NaN.abs())); assert_eq!(infinity.signum(), 1f); assert_eq!(1f.signum(), 1f); assert_eq!(0f.signum(), 1f); assert_eq!((-0f).signum(), -1f); assert_eq!((-1f).signum(), -1f); assert_eq!(neg_infinity.signum(), -1f); assert_eq!((1f/neg_infinity).signum(), -1f); assert!(is_NaN(NaN.signum())); assert!(infinity.is_positive()); assert!(1f.is_positive()); assert!(0f.is_positive()); assert!(!(-0f).is_positive()); assert!(!(-1f).is_positive()); assert!(!neg_infinity.is_positive()); assert!(!(1f/neg_infinity).is_positive()); assert!(!NaN.is_positive()); assert!(!infinity.is_negative()); assert!(!1f.is_negative()); assert!(!0f.is_negative()); assert!((-0f).is_negative()); assert!((-1f).is_negative()); assert!(neg_infinity.is_negative()); assert!((1f/neg_infinity).is_negative()); assert!(!NaN.is_negative()); } #[test] pub fn test_to_str_exact_do_decimal() { let s = to_str_exact(5.0, 4u); assert_eq!(s, ~"5.0000"); } #[test] pub fn test_from_str() { assert_eq!(from_str(~"3"), Some(3.)); assert_eq!(from_str(~"3.14"), Some(3.14)); assert_eq!(from_str(~"+3.14"), Some(3.14)); assert_eq!(from_str(~"-3.14"), Some(-3.14)); assert_eq!(from_str(~"2.5E10"), Some(25000000000.)); assert_eq!(from_str(~"2.5e10"), Some(25000000000.)); assert_eq!(from_str(~"25000000000.E-10"), Some(2.5)); assert_eq!(from_str(~"."), Some(0.)); assert_eq!(from_str(~".e1"), Some(0.)); assert_eq!(from_str(~".e-1"), Some(0.)); assert_eq!(from_str(~"5."), Some(5.)); assert_eq!(from_str(~".5"), Some(0.5)); assert_eq!(from_str(~"0.5"), Some(0.5)); assert_eq!(from_str(~"-.5"), Some(-0.5)); assert_eq!(from_str(~"-5"), Some(-5.)); assert_eq!(from_str(~"inf"), Some(infinity)); assert_eq!(from_str(~"+inf"), Some(infinity)); assert_eq!(from_str(~"-inf"), Some(neg_infinity)); // note: NaN != NaN, hence this slightly complex test match from_str(~"NaN") { Some(f) => assert!(is_NaN(f)), None => fail!() } // note: -0 == 0, hence these slightly more complex tests match from_str(~"-0") { Some(v) if v.is_zero() => assert!(v.is_negative()), _ => fail!() } match from_str(~"0") { Some(v) if v.is_zero() => assert!(v.is_positive()), _ => fail!() } assert!(from_str(~"").is_none()); assert!(from_str(~"x").is_none()); assert!(from_str(~" ").is_none()); assert!(from_str(~" ").is_none()); assert!(from_str(~"e").is_none()); assert!(from_str(~"E").is_none()); assert!(from_str(~"E1").is_none()); assert!(from_str(~"1e1e1").is_none()); assert!(from_str(~"1e1.1").is_none()); assert!(from_str(~"1e1-1").is_none()); } #[test] pub fn test_from_str_hex() { assert_eq!(from_str_hex(~"a4"), Some(164.)); assert_eq!(from_str_hex(~"a4.fe"), Some(164.9921875)); assert_eq!(from_str_hex(~"-a4.fe"), Some(-164.9921875)); assert_eq!(from_str_hex(~"+a4.fe"), Some(164.9921875)); assert_eq!(from_str_hex(~"ff0P4"), Some(0xff00 as float)); assert_eq!(from_str_hex(~"ff0p4"), Some(0xff00 as float)); assert_eq!(from_str_hex(~"ff0p-4"), Some(0xff as float)); assert_eq!(from_str_hex(~"."), Some(0.)); assert_eq!(from_str_hex(~".p1"), Some(0.)); assert_eq!(from_str_hex(~".p-1"), Some(0.)); assert_eq!(from_str_hex(~"f."), Some(15.)); assert_eq!(from_str_hex(~".f"), Some(0.9375)); assert_eq!(from_str_hex(~"0.f"), Some(0.9375)); assert_eq!(from_str_hex(~"-.f"), Some(-0.9375)); assert_eq!(from_str_hex(~"-f"), Some(-15.)); assert_eq!(from_str_hex(~"inf"), Some(infinity)); assert_eq!(from_str_hex(~"+inf"), Some(infinity)); assert_eq!(from_str_hex(~"-inf"), Some(neg_infinity)); // note: NaN != NaN, hence this slightly complex test match from_str_hex(~"NaN") { Some(f) => assert!(is_NaN(f)), None => fail!() } // note: -0 == 0, hence these slightly more complex tests match from_str_hex(~"-0") { Some(v) if v.is_zero() => assert!(v.is_negative()), _ => fail!() } match from_str_hex(~"0") { Some(v) if v.is_zero() => assert!(v.is_positive()), _ => fail!() } assert_eq!(from_str_hex(~"e"), Some(14.)); assert_eq!(from_str_hex(~"E"), Some(14.)); assert_eq!(from_str_hex(~"E1"), Some(225.)); assert_eq!(from_str_hex(~"1e1e1"), Some(123361.)); assert_eq!(from_str_hex(~"1e1.1"), Some(481.0625)); assert!(from_str_hex(~"").is_none()); assert!(from_str_hex(~"x").is_none()); assert!(from_str_hex(~" ").is_none()); assert!(from_str_hex(~" ").is_none()); assert!(from_str_hex(~"p").is_none()); assert!(from_str_hex(~"P").is_none()); assert!(from_str_hex(~"P1").is_none()); assert!(from_str_hex(~"1p1p1").is_none()); assert!(from_str_hex(~"1p1.1").is_none()); assert!(from_str_hex(~"1p1-1").is_none()); } #[test] pub fn test_to_str_hex() { assert_eq!(to_str_hex(164.), ~"a4"); assert_eq!(to_str_hex(164.9921875), ~"a4.fe"); assert_eq!(to_str_hex(-164.9921875), ~"-a4.fe"); assert_eq!(to_str_hex(0xff00 as float), ~"ff00"); assert_eq!(to_str_hex(-(0xff00 as float)), ~"-ff00"); assert_eq!(to_str_hex(0.), ~"0"); assert_eq!(to_str_hex(15.), ~"f"); assert_eq!(to_str_hex(-15.), ~"-f"); assert_eq!(to_str_hex(0.9375), ~"0.f"); assert_eq!(to_str_hex(-0.9375), ~"-0.f"); assert_eq!(to_str_hex(infinity), ~"inf"); assert_eq!(to_str_hex(neg_infinity), ~"-inf"); assert_eq!(to_str_hex(NaN), ~"NaN"); assert_eq!(to_str_hex(0.), ~"0"); assert_eq!(to_str_hex(-0.), ~"-0"); } #[test] pub fn test_to_str_radix() { assert_eq!(to_str_radix(36., 36u), ~"10"); assert_eq!(to_str_radix(8.125, 2u), ~"1000.001"); } #[test] pub fn test_from_str_radix() { assert_eq!(from_str_radix(~"10", 36u), Some(36.)); assert_eq!(from_str_radix(~"1000.001", 2u), Some(8.125)); } #[test] pub fn test_to_str_inf() { assert_eq!(to_str_digits(infinity, 10u), ~"inf"); assert_eq!(to_str_digits(-infinity, 10u), ~"-inf"); } } // // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // End: //