use byteorder::{ReadBytesExt, WriteBytesExt, LittleEndian, BigEndian, self}; use std::collections::Bound::{Included, Excluded}; use std::collections::{btree_map, BTreeMap, HashMap, HashSet, VecDeque}; use std::{fmt, iter, ptr}; use rustc::hir::def_id::DefId; use rustc::ty::BareFnTy; use rustc::ty::subst::Substs; use rustc::ty::layout::{self, TargetDataLayout}; use error::{EvalError, EvalResult}; use primval::PrimVal; //////////////////////////////////////////////////////////////////////////////// // Allocations and pointers //////////////////////////////////////////////////////////////////////////////// #[derive(Copy, Clone, Debug, Eq, Hash, PartialEq)] pub struct AllocId(pub u64); impl fmt::Display for AllocId { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.0) } } #[derive(Debug)] pub struct Allocation { pub bytes: Vec, pub relocations: BTreeMap, pub undef_mask: UndefMask, pub align: usize, } #[derive(Copy, Clone, Debug, Eq, PartialEq)] pub struct Pointer { pub alloc_id: AllocId, pub offset: usize, } impl Pointer { pub fn offset(self, i: isize) -> Self { Pointer { offset: (self.offset as isize + i) as usize, ..self } } pub fn points_to_zst(&self) -> bool { self.alloc_id == ZST_ALLOC_ID } fn zst_ptr() -> Self { Pointer { alloc_id: ZST_ALLOC_ID, offset: 0, } } } #[derive(Debug, Copy, Clone, Hash, Eq, PartialEq)] pub struct FunctionDefinition<'tcx> { pub def_id: DefId, pub substs: &'tcx Substs<'tcx>, pub fn_ty: &'tcx BareFnTy<'tcx>, } //////////////////////////////////////////////////////////////////////////////// // Top-level interpreter memory //////////////////////////////////////////////////////////////////////////////// pub struct Memory<'a, 'tcx> { /// Actual memory allocations (arbitrary bytes, may contain pointers into other allocations) alloc_map: HashMap, /// Number of virtual bytes allocated memory_usage: usize, /// Maximum number of virtual bytes that may be allocated memory_size: usize, /// Function "allocations". They exist solely so pointers have something to point to, and /// we can figure out what they point to. functions: HashMap>, /// Inverse map of `functions` so we don't allocate a new pointer every time we need one function_alloc_cache: HashMap, AllocId>, next_id: AllocId, pub layout: &'a TargetDataLayout, } const ZST_ALLOC_ID: AllocId = AllocId(0); impl<'a, 'tcx> Memory<'a, 'tcx> { pub fn new(layout: &'a TargetDataLayout, max_memory: usize) -> Self { let mut mem = Memory { alloc_map: HashMap::new(), functions: HashMap::new(), function_alloc_cache: HashMap::new(), next_id: AllocId(1), layout: layout, memory_size: max_memory, memory_usage: 0, }; // alloc id 0 is reserved for ZSTs, this is an optimization to prevent ZST // (e.g. function items, (), [], ...) from requiring memory let alloc = Allocation { bytes: Vec::new(), relocations: BTreeMap::new(), undef_mask: UndefMask::new(0), align: 1, }; mem.alloc_map.insert(ZST_ALLOC_ID, alloc); // check that additional zst allocs work debug_assert!(mem.allocate(0, 1).unwrap().points_to_zst()); debug_assert!(mem.get(ZST_ALLOC_ID).is_ok()); mem } pub fn allocations(&self) -> ::std::collections::hash_map::Iter { self.alloc_map.iter() } pub fn create_fn_ptr(&mut self, def_id: DefId, substs: &'tcx Substs<'tcx>, fn_ty: &'tcx BareFnTy<'tcx>) -> Pointer { let def = FunctionDefinition { def_id: def_id, substs: substs, fn_ty: fn_ty, }; if let Some(&alloc_id) = self.function_alloc_cache.get(&def) { return Pointer { alloc_id: alloc_id, offset: 0, }; } let id = self.next_id; debug!("creating fn ptr: {}", id); self.next_id.0 += 1; self.functions.insert(id, def); self.function_alloc_cache.insert(def, id); Pointer { alloc_id: id, offset: 0, } } pub fn allocate(&mut self, size: usize, align: usize) -> EvalResult<'tcx, Pointer> { assert!(align != 0); if size == 0 { return Ok(Pointer::zst_ptr()); } if self.memory_size - self.memory_usage < size { return Err(EvalError::OutOfMemory { allocation_size: size, memory_size: self.memory_size, memory_usage: self.memory_usage, }); } self.memory_usage += size; let alloc = Allocation { bytes: vec![0; size], relocations: BTreeMap::new(), undef_mask: UndefMask::new(size), align: align, }; let id = self.next_id; self.next_id.0 += 1; self.alloc_map.insert(id, alloc); Ok(Pointer { alloc_id: id, offset: 0, }) } // TODO(solson): Track which allocations were returned from __rust_allocate and report an error // when reallocating/deallocating any others. pub fn reallocate(&mut self, ptr: Pointer, new_size: usize, align: usize) -> EvalResult<'tcx, Pointer> { // TODO(solson): Report error about non-__rust_allocate'd pointer. if ptr.offset != 0 { return Err(EvalError::Unimplemented(format!("bad pointer offset: {}", ptr.offset))); } if ptr.points_to_zst() { return self.allocate(new_size, align); } let size = self.get(ptr.alloc_id)?.bytes.len(); if new_size > size { let amount = new_size - size; self.memory_usage += amount; let alloc = self.get_mut(ptr.alloc_id)?; alloc.bytes.extend(iter::repeat(0).take(amount)); alloc.undef_mask.grow(amount, false); } else if size > new_size { self.memory_usage -= size - new_size; self.clear_relocations(ptr.offset(new_size as isize), size - new_size)?; let alloc = self.get_mut(ptr.alloc_id)?; alloc.bytes.truncate(new_size); alloc.bytes.shrink_to_fit(); alloc.undef_mask.truncate(new_size); } Ok(Pointer { alloc_id: ptr.alloc_id, offset: 0, }) } // TODO(solson): See comment on `reallocate`. pub fn deallocate(&mut self, ptr: Pointer) -> EvalResult<'tcx, ()> { if ptr.points_to_zst() { return Ok(()); } if ptr.offset != 0 { // TODO(solson): Report error about non-__rust_allocate'd pointer. return Err(EvalError::Unimplemented(format!("bad pointer offset: {}", ptr.offset))); } if let Some(alloc) = self.alloc_map.remove(&ptr.alloc_id) { self.memory_usage -= alloc.bytes.len(); } else { debug!("deallocated a pointer twice: {}", ptr.alloc_id); // TODO(solson): Report error about erroneous free. This is blocked on properly tracking // already-dropped state since this if-statement is entered even in safe code without // it. } debug!("deallocated : {}", ptr.alloc_id); Ok(()) } pub fn pointer_size(&self) -> usize { self.layout.pointer_size.bytes() as usize } pub fn endianess(&self) -> layout::Endian { self.layout.endian } pub fn check_align(&self, ptr: Pointer, align: usize) -> EvalResult<'tcx, ()> { let alloc = self.get(ptr.alloc_id)?; if alloc.align < align { return Err(EvalError::AlignmentCheckFailed { has: alloc.align, required: align, }); } if ptr.offset % align == 0 { Ok(()) } else { Err(EvalError::AlignmentCheckFailed { has: ptr.offset % align, required: align, }) } } } /// Allocation accessors impl<'a, 'tcx> Memory<'a, 'tcx> { pub fn get(&self, id: AllocId) -> EvalResult<'tcx, &Allocation> { match self.alloc_map.get(&id) { Some(alloc) => Ok(alloc), None => match self.functions.get(&id) { Some(_) => Err(EvalError::DerefFunctionPointer), None => Err(EvalError::DanglingPointerDeref), } } } pub fn get_mut(&mut self, id: AllocId) -> EvalResult<'tcx, &mut Allocation> { match self.alloc_map.get_mut(&id) { Some(alloc) => Ok(alloc), None => match self.functions.get(&id) { Some(_) => Err(EvalError::DerefFunctionPointer), None => Err(EvalError::DanglingPointerDeref), } } } pub fn get_fn(&self, id: AllocId) -> EvalResult<'tcx, FunctionDefinition<'tcx>> { debug!("reading fn ptr: {}", id); match self.functions.get(&id) { Some(&fn_id) => Ok(fn_id), None => match self.alloc_map.get(&id) { Some(_) => Err(EvalError::ExecuteMemory), None => Err(EvalError::InvalidFunctionPointer), } } } /// Print an allocation and all allocations it points to, recursively. pub fn dump(&self, id: AllocId) { let mut allocs_seen = HashSet::new(); let mut allocs_to_print = VecDeque::new(); allocs_to_print.push_back(id); while let Some(id) = allocs_to_print.pop_front() { allocs_seen.insert(id); let prefix = format!("Alloc {:<5} ", format!("{}:", id)); print!("{}", prefix); let mut relocations = vec![]; let alloc = match (self.alloc_map.get(&id), self.functions.get(&id)) { (Some(a), None) => a, (None, Some(_)) => { // FIXME: print function name println!("function pointer"); continue; }, (None, None) => { println!("(deallocated)"); continue; }, (Some(_), Some(_)) => bug!("miri invariant broken: an allocation id exists that points to both a function and a memory location"), }; for i in 0..alloc.bytes.len() { if let Some(&target_id) = alloc.relocations.get(&i) { if !allocs_seen.contains(&target_id) { allocs_to_print.push_back(target_id); } relocations.push((i, target_id)); } if alloc.undef_mask.is_range_defined(i, i + 1) { print!("{:02x} ", alloc.bytes[i]); } else { print!("__ "); } } println!("({} bytes)", alloc.bytes.len()); if !relocations.is_empty() { print!("{:1$}", "", prefix.len()); // Print spaces. let mut pos = 0; let relocation_width = (self.pointer_size() - 1) * 3; for (i, target_id) in relocations { print!("{:1$}", "", (i - pos) * 3); print!("└{0:─^1$}┘ ", format!("({})", target_id), relocation_width); pos = i + self.pointer_size(); } println!(""); } } } } /// Byte accessors impl<'a, 'tcx> Memory<'a, 'tcx> { fn get_bytes_unchecked(&self, ptr: Pointer, size: usize) -> EvalResult<'tcx, &[u8]> { let alloc = self.get(ptr.alloc_id)?; if ptr.offset + size > alloc.bytes.len() { return Err(EvalError::PointerOutOfBounds { ptr: ptr, size: size, allocation_size: alloc.bytes.len(), }); } Ok(&alloc.bytes[ptr.offset..ptr.offset + size]) } fn get_bytes_unchecked_mut(&mut self, ptr: Pointer, size: usize) -> EvalResult<'tcx, &mut [u8]> { let alloc = self.get_mut(ptr.alloc_id)?; if ptr.offset + size > alloc.bytes.len() { return Err(EvalError::PointerOutOfBounds { ptr: ptr, size: size, allocation_size: alloc.bytes.len(), }); } Ok(&mut alloc.bytes[ptr.offset..ptr.offset + size]) } fn get_bytes(&self, ptr: Pointer, size: usize, align: usize) -> EvalResult<'tcx, &[u8]> { self.check_align(ptr, align)?; if self.relocations(ptr, size)?.count() != 0 { return Err(EvalError::ReadPointerAsBytes); } self.check_defined(ptr, size)?; self.get_bytes_unchecked(ptr, size) } fn get_bytes_mut(&mut self, ptr: Pointer, size: usize, align: usize) -> EvalResult<'tcx, &mut [u8]> { self.check_align(ptr, align)?; self.clear_relocations(ptr, size)?; self.mark_definedness(ptr, size, true)?; self.get_bytes_unchecked_mut(ptr, size) } } /// Reading and writing impl<'a, 'tcx> Memory<'a, 'tcx> { pub fn copy(&mut self, src: Pointer, dest: Pointer, size: usize, align: usize) -> EvalResult<'tcx, ()> { self.check_relocation_edges(src, size)?; let src_bytes = self.get_bytes_unchecked_mut(src, size)?.as_mut_ptr(); let dest_bytes = self.get_bytes_mut(dest, size, align)?.as_mut_ptr(); // SAFE: The above indexing would have panicked if there weren't at least `size` bytes // behind `src` and `dest`. Also, we use the overlapping-safe `ptr::copy` if `src` and // `dest` could possibly overlap. unsafe { if src.alloc_id == dest.alloc_id { ptr::copy(src_bytes, dest_bytes, size); } else { ptr::copy_nonoverlapping(src_bytes, dest_bytes, size); } } self.copy_undef_mask(src, dest, size)?; self.copy_relocations(src, dest, size)?; Ok(()) } pub fn read_bytes(&self, ptr: Pointer, size: usize) -> EvalResult<'tcx, &[u8]> { self.get_bytes(ptr, size, 1) } pub fn write_bytes(&mut self, ptr: Pointer, src: &[u8]) -> EvalResult<'tcx, ()> { let bytes = self.get_bytes_mut(ptr, src.len(), 1)?; bytes.clone_from_slice(src); Ok(()) } pub fn write_repeat(&mut self, ptr: Pointer, val: u8, count: usize) -> EvalResult<'tcx, ()> { let bytes = self.get_bytes_mut(ptr, count, 1)?; for b in bytes { *b = val; } Ok(()) } pub fn read_ptr(&self, ptr: Pointer) -> EvalResult<'tcx, Pointer> { let size = self.pointer_size(); self.check_defined(ptr, size)?; let endianess = self.endianess(); let bytes = self.get_bytes_unchecked(ptr, size)?; let offset = read_target_uint(endianess, bytes).unwrap() as usize; let alloc = self.get(ptr.alloc_id)?; match alloc.relocations.get(&ptr.offset) { Some(&alloc_id) => Ok(Pointer { alloc_id: alloc_id, offset: offset }), None => Err(EvalError::ReadBytesAsPointer), } } pub fn write_ptr(&mut self, dest: Pointer, ptr: Pointer) -> EvalResult<'tcx, ()> { self.write_usize(dest, ptr.offset as u64)?; self.get_mut(dest.alloc_id)?.relocations.insert(dest.offset, ptr.alloc_id); Ok(()) } pub fn write_primval(&mut self, ptr: Pointer, val: PrimVal) -> EvalResult<'tcx, ()> { let pointer_size = self.pointer_size(); match val { PrimVal::Bool(b) => self.write_bool(ptr, b), PrimVal::I8(n) => self.write_int(ptr, n as i64, 1), PrimVal::I16(n) => self.write_int(ptr, n as i64, 2), PrimVal::I32(n) => self.write_int(ptr, n as i64, 4), PrimVal::I64(n) => self.write_int(ptr, n as i64, 8), PrimVal::U8(n) => self.write_uint(ptr, n as u64, 1), PrimVal::U16(n) => self.write_uint(ptr, n as u64, 2), PrimVal::U32(n) => self.write_uint(ptr, n as u64, 4), PrimVal::U64(n) => self.write_uint(ptr, n as u64, 8), PrimVal::Char(c) => self.write_uint(ptr, c as u64, 4), PrimVal::IntegerPtr(n) => self.write_uint(ptr, n as u64, pointer_size), PrimVal::F32(f) => self.write_f32(ptr, f), PrimVal::F64(f) => self.write_f64(ptr, f), PrimVal::FnPtr(_p) | PrimVal::AbstractPtr(_p) => unimplemented!(), } } pub fn read_bool(&self, ptr: Pointer) -> EvalResult<'tcx, bool> { let bytes = self.get_bytes(ptr, 1, self.layout.i1_align.abi() as usize)?; match bytes[0] { 0 => Ok(false), 1 => Ok(true), _ => Err(EvalError::InvalidBool), } } pub fn write_bool(&mut self, ptr: Pointer, b: bool) -> EvalResult<'tcx, ()> { let align = self.layout.i1_align.abi() as usize; self.get_bytes_mut(ptr, 1, align) .map(|bytes| bytes[0] = b as u8) } fn int_align(&self, size: usize) -> EvalResult<'tcx, usize> { match size { 1 => Ok(self.layout.i8_align.abi() as usize), 2 => Ok(self.layout.i16_align.abi() as usize), 4 => Ok(self.layout.i32_align.abi() as usize), 8 => Ok(self.layout.i64_align.abi() as usize), _ => bug!("bad integer size"), } } pub fn read_int(&self, ptr: Pointer, size: usize) -> EvalResult<'tcx, i64> { let align = self.int_align(size)?; self.get_bytes(ptr, size, align).map(|b| read_target_int(self.endianess(), b).unwrap()) } pub fn write_int(&mut self, ptr: Pointer, n: i64, size: usize) -> EvalResult<'tcx, ()> { let align = self.int_align(size)?; let endianess = self.endianess(); let b = self.get_bytes_mut(ptr, size, align)?; write_target_int(endianess, b, n).unwrap(); Ok(()) } pub fn read_uint(&self, ptr: Pointer, size: usize) -> EvalResult<'tcx, u64> { let align = self.int_align(size)?; self.get_bytes(ptr, size, align).map(|b| read_target_uint(self.endianess(), b).unwrap()) } pub fn write_uint(&mut self, ptr: Pointer, n: u64, size: usize) -> EvalResult<'tcx, ()> { let align = self.int_align(size)?; let endianess = self.endianess(); let b = self.get_bytes_mut(ptr, size, align)?; write_target_uint(endianess, b, n).unwrap(); Ok(()) } pub fn read_isize(&self, ptr: Pointer) -> EvalResult<'tcx, i64> { self.read_int(ptr, self.pointer_size()) } pub fn write_isize(&mut self, ptr: Pointer, n: i64) -> EvalResult<'tcx, ()> { let size = self.pointer_size(); self.write_int(ptr, n, size) } pub fn read_usize(&self, ptr: Pointer) -> EvalResult<'tcx, u64> { self.read_uint(ptr, self.pointer_size()) } pub fn write_usize(&mut self, ptr: Pointer, n: u64) -> EvalResult<'tcx, ()> { let size = self.pointer_size(); self.write_uint(ptr, n, size) } pub fn write_f32(&mut self, ptr: Pointer, f: f32) -> EvalResult<'tcx, ()> { let endianess = self.endianess(); let align = self.layout.f32_align.abi() as usize; let b = self.get_bytes_mut(ptr, 4, align)?; write_target_f32(endianess, b, f).unwrap(); Ok(()) } pub fn write_f64(&mut self, ptr: Pointer, f: f64) -> EvalResult<'tcx, ()> { let endianess = self.endianess(); let align = self.layout.f64_align.abi() as usize; let b = self.get_bytes_mut(ptr, 8, align)?; write_target_f64(endianess, b, f).unwrap(); Ok(()) } pub fn read_f32(&self, ptr: Pointer) -> EvalResult<'tcx, f32> { self.get_bytes(ptr, 4, self.layout.f32_align.abi() as usize) .map(|b| read_target_f32(self.endianess(), b).unwrap()) } pub fn read_f64(&self, ptr: Pointer) -> EvalResult<'tcx, f64> { self.get_bytes(ptr, 8, self.layout.f64_align.abi() as usize) .map(|b| read_target_f64(self.endianess(), b).unwrap()) } } /// Relocations impl<'a, 'tcx> Memory<'a, 'tcx> { fn relocations(&self, ptr: Pointer, size: usize) -> EvalResult<'tcx, btree_map::Range> { let start = ptr.offset.saturating_sub(self.pointer_size() - 1); let end = ptr.offset + size; Ok(self.get(ptr.alloc_id)?.relocations.range(Included(&start), Excluded(&end))) } fn clear_relocations(&mut self, ptr: Pointer, size: usize) -> EvalResult<'tcx, ()> { // Find all relocations overlapping the given range. let keys: Vec<_> = self.relocations(ptr, size)?.map(|(&k, _)| k).collect(); if keys.is_empty() { return Ok(()); } // Find the start and end of the given range and its outermost relocations. let start = ptr.offset; let end = start + size; let first = *keys.first().unwrap(); let last = *keys.last().unwrap() + self.pointer_size(); let alloc = self.get_mut(ptr.alloc_id)?; // Mark parts of the outermost relocations as undefined if they partially fall outside the // given range. if first < start { alloc.undef_mask.set_range(first, start, false); } if last > end { alloc.undef_mask.set_range(end, last, false); } // Forget all the relocations. for k in keys { alloc.relocations.remove(&k); } Ok(()) } fn check_relocation_edges(&self, ptr: Pointer, size: usize) -> EvalResult<'tcx, ()> { let overlapping_start = self.relocations(ptr, 0)?.count(); let overlapping_end = self.relocations(ptr.offset(size as isize), 0)?.count(); if overlapping_start + overlapping_end != 0 { return Err(EvalError::ReadPointerAsBytes); } Ok(()) } fn copy_relocations(&mut self, src: Pointer, dest: Pointer, size: usize) -> EvalResult<'tcx, ()> { let relocations: Vec<_> = self.relocations(src, size)? .map(|(&offset, &alloc_id)| { // Update relocation offsets for the new positions in the destination allocation. (offset + dest.offset - src.offset, alloc_id) }) .collect(); self.get_mut(dest.alloc_id)?.relocations.extend(relocations); Ok(()) } } /// Undefined bytes impl<'a, 'tcx> Memory<'a, 'tcx> { // FIXME(solson): This is a very naive, slow version. fn copy_undef_mask(&mut self, src: Pointer, dest: Pointer, size: usize) -> EvalResult<'tcx, ()> { // The bits have to be saved locally before writing to dest in case src and dest overlap. let mut v = Vec::with_capacity(size); for i in 0..size { let defined = self.get(src.alloc_id)?.undef_mask.get(src.offset + i); v.push(defined); } for (i, defined) in v.into_iter().enumerate() { self.get_mut(dest.alloc_id)?.undef_mask.set(dest.offset + i, defined); } Ok(()) } fn check_defined(&self, ptr: Pointer, size: usize) -> EvalResult<'tcx, ()> { let alloc = self.get(ptr.alloc_id)?; if !alloc.undef_mask.is_range_defined(ptr.offset, ptr.offset + size) { return Err(EvalError::ReadUndefBytes); } Ok(()) } pub fn mark_definedness(&mut self, ptr: Pointer, size: usize, new_state: bool) -> EvalResult<'tcx, ()> { let mut alloc = self.get_mut(ptr.alloc_id)?; alloc.undef_mask.set_range(ptr.offset, ptr.offset + size, new_state); Ok(()) } } //////////////////////////////////////////////////////////////////////////////// // Methods to access integers in the target endianess //////////////////////////////////////////////////////////////////////////////// fn write_target_uint(endianess: layout::Endian, mut target: &mut [u8], data: u64) -> Result<(), byteorder::Error> { let len = target.len(); match endianess { layout::Endian::Little => target.write_uint::(data, len), layout::Endian::Big => target.write_uint::(data, len), } } fn write_target_int(endianess: layout::Endian, mut target: &mut [u8], data: i64) -> Result<(), byteorder::Error> { let len = target.len(); match endianess { layout::Endian::Little => target.write_int::(data, len), layout::Endian::Big => target.write_int::(data, len), } } fn read_target_uint(endianess: layout::Endian, mut source: &[u8]) -> Result { match endianess { layout::Endian::Little => source.read_uint::(source.len()), layout::Endian::Big => source.read_uint::(source.len()), } } fn read_target_int(endianess: layout::Endian, mut source: &[u8]) -> Result { match endianess { layout::Endian::Little => source.read_int::(source.len()), layout::Endian::Big => source.read_int::(source.len()), } } //////////////////////////////////////////////////////////////////////////////// // Methods to access floats in the target endianess //////////////////////////////////////////////////////////////////////////////// fn write_target_f32(endianess: layout::Endian, mut target: &mut [u8], data: f32) -> Result<(), byteorder::Error> { match endianess { layout::Endian::Little => target.write_f32::(data), layout::Endian::Big => target.write_f32::(data), } } fn write_target_f64(endianess: layout::Endian, mut target: &mut [u8], data: f64) -> Result<(), byteorder::Error> { match endianess { layout::Endian::Little => target.write_f64::(data), layout::Endian::Big => target.write_f64::(data), } } fn read_target_f32(endianess: layout::Endian, mut source: &[u8]) -> Result { match endianess { layout::Endian::Little => source.read_f32::(), layout::Endian::Big => source.read_f32::(), } } fn read_target_f64(endianess: layout::Endian, mut source: &[u8]) -> Result { match endianess { layout::Endian::Little => source.read_f64::(), layout::Endian::Big => source.read_f64::(), } } //////////////////////////////////////////////////////////////////////////////// // Undefined byte tracking //////////////////////////////////////////////////////////////////////////////// type Block = u64; const BLOCK_SIZE: usize = 64; #[derive(Clone, Debug)] pub struct UndefMask { blocks: Vec, len: usize, } impl UndefMask { fn new(size: usize) -> Self { let mut m = UndefMask { blocks: vec![], len: 0, }; m.grow(size, false); m } /// Check whether the range `start..end` (end-exclusive) is entirely defined. pub fn is_range_defined(&self, start: usize, end: usize) -> bool { if end > self.len { return false; } for i in start..end { if !self.get(i) { return false; } } true } fn set_range(&mut self, start: usize, end: usize, new_state: bool) { let len = self.len; if end > len { self.grow(end - len, new_state); } self.set_range_inbounds(start, end, new_state); } fn set_range_inbounds(&mut self, start: usize, end: usize, new_state: bool) { for i in start..end { self.set(i, new_state); } } fn get(&self, i: usize) -> bool { let (block, bit) = bit_index(i); (self.blocks[block] & 1 << bit) != 0 } fn set(&mut self, i: usize, new_state: bool) { let (block, bit) = bit_index(i); if new_state { self.blocks[block] |= 1 << bit; } else { self.blocks[block] &= !(1 << bit); } } fn grow(&mut self, amount: usize, new_state: bool) { let unused_trailing_bits = self.blocks.len() * BLOCK_SIZE - self.len; if amount > unused_trailing_bits { let additional_blocks = amount / BLOCK_SIZE + 1; self.blocks.extend(iter::repeat(0).take(additional_blocks)); } let start = self.len; self.len += amount; self.set_range_inbounds(start, start + amount, new_state); } fn truncate(&mut self, length: usize) { self.len = length; self.blocks.truncate(self.len / BLOCK_SIZE + 1); self.blocks.shrink_to_fit(); } } fn bit_index(bits: usize) -> (usize, usize) { (bits / BLOCK_SIZE, bits % BLOCK_SIZE) }