// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use llvm::{BasicBlockRef, ValueRef}; use rustc::mir::repr as mir; use trans::adt; use trans::base; use trans::build; use trans::attributes; use trans::common::{self, Block}; use trans::debuginfo::DebugLoc; use trans::type_of; use trans::type_::Type; use super::MirContext; use super::operand::OperandValue::{FatPtr, Immediate, Ref}; impl<'bcx, 'tcx> MirContext<'bcx, 'tcx> { pub fn trans_block(&mut self, bb: mir::BasicBlock) { debug!("trans_block({:?})", bb); let mut bcx = self.bcx(bb); let data = self.mir.basic_block_data(bb); for statement in &data.statements { bcx = self.trans_statement(bcx, statement); } debug!("trans_block: terminator: {:?}", data.terminator()); match *data.terminator() { mir::Terminator::Goto { target } => { build::Br(bcx, self.llblock(target), DebugLoc::None) } mir::Terminator::If { ref cond, targets: (true_bb, false_bb) } => { let cond = self.trans_operand(bcx, cond); let lltrue = self.llblock(true_bb); let llfalse = self.llblock(false_bb); build::CondBr(bcx, cond.immediate(), lltrue, llfalse, DebugLoc::None); } mir::Terminator::Switch { ref discr, ref adt_def, ref targets } => { let adt_ty = bcx.tcx().lookup_item_type(adt_def.did).ty; let represented_ty = adt::represent_type(bcx.ccx(), adt_ty); let discr_lvalue = self.trans_lvalue(bcx, discr); let discr = adt::trans_get_discr(bcx, &represented_ty, discr_lvalue.llval, None); // The else branch of the Switch can't be hit, so branch to an unreachable // instruction so LLVM knows that let unreachable_blk = self.unreachable_block(); let switch = build::Switch(bcx, discr, unreachable_blk.llbb, targets.len()); assert_eq!(adt_def.variants.len(), targets.len()); for (adt_variant, target) in adt_def.variants.iter().zip(targets) { let llval = adt::trans_case(bcx, &*represented_ty, adt_variant.disr_val); let llbb = self.llblock(*target); build::AddCase(switch, llval, llbb) } } mir::Terminator::SwitchInt { ref discr, switch_ty, ref values, ref targets } => { let (otherwise, targets) = targets.split_last().unwrap(); let discr = build::Load(bcx, self.trans_lvalue(bcx, discr).llval); let switch = build::Switch(bcx, discr, self.llblock(*otherwise), values.len()); for (value, target) in values.iter().zip(targets) { let llval = self.trans_constval(bcx, value, switch_ty).immediate(); let llbb = self.llblock(*target); build::AddCase(switch, llval, llbb) } } mir::Terminator::Resume => { let ps = self.get_personality_slot(bcx); let lp = build::Load(bcx, ps); base::call_lifetime_end(bcx, ps); base::trans_unwind_resume(bcx, lp); } mir::Terminator::Return => { let return_ty = bcx.monomorphize(&self.mir.return_ty); base::build_return_block(bcx.fcx, bcx, return_ty, DebugLoc::None); } mir::Terminator::Call { ref func, ref args, ref kind } => { // Create the callee. This will always be a fn ptr and hence a kind of scalar. let callee = self.trans_operand(bcx, func); let attrs = attributes::from_fn_type(bcx.ccx(), callee.ty); let debugloc = DebugLoc::None; // The arguments we'll be passing. Plus one to account for outptr, if used. let mut llargs = Vec::with_capacity(args.len() + 1); // Prepare the return value destination let (ret_dest_ty, must_copy_dest) = if let Some(d) = kind.destination() { let dest = self.trans_lvalue(bcx, d); let ret_ty = dest.ty.to_ty(bcx.tcx()); if type_of::return_uses_outptr(bcx.ccx(), ret_ty) { llargs.push(dest.llval); (Some((dest, ret_ty)), false) } else { (Some((dest, ret_ty)), !common::type_is_zero_size(bcx.ccx(), ret_ty)) } } else { (None, false) }; // Process the rest of the args. for arg in args { match self.trans_operand(bcx, arg).val { Ref(llval) | Immediate(llval) => llargs.push(llval), FatPtr(b, e) => { llargs.push(b); llargs.push(e); } } } // Many different ways to call a function handled here match (base::avoid_invoke(bcx), kind) { // The two cases below are the only ones to use LLVM’s `invoke`. (false, &mir::CallKind::DivergingCleanup(cleanup)) => { let cleanup = self.bcx(cleanup); let landingpad = self.make_landing_pad(cleanup); build::Invoke(bcx, callee.immediate(), &llargs[..], self.unreachable_block().llbb, landingpad.llbb, Some(attrs), debugloc); }, (false, &mir::CallKind::ConvergingCleanup { ref targets, .. }) => { let cleanup = self.bcx(targets.1); let landingpad = self.make_landing_pad(cleanup); let (target, postinvoke) = if must_copy_dest { (bcx.fcx.new_block(false, "", None), Some(self.bcx(targets.0))) } else { (self.bcx(targets.0), None) }; let invokeret = build::Invoke(bcx, callee.immediate(), &llargs[..], target.llbb, landingpad.llbb, Some(attrs), debugloc); if let Some(postinvoketarget) = postinvoke { // We translate the copy into a temoprary block. The temporary block is // necessary because the current block has already been terminated (by // `invoke`) and we cannot really translate into the target block // because: // * The target block may have more than a single precedesor; // * Some LLVM insns cannot have a preceeding store insn (phi, // cleanuppad), and adding/prepending the store now may render // those other instructions invalid. // // NB: This approach still may break some LLVM code. For example if the // target block starts with a `phi` (which may only match on immediate // precedesors), it cannot know about this temporary block thus // resulting in an invalid code: // // this: // … // %0 = … // %1 = invoke to label %temp … // temp: // store ty %1, ty* %dest // br label %actualtargetblock // actualtargetblock: ; preds: %temp, … // phi … [%this, …], [%0, …] ; ERROR: phi requires to match only on // ; immediate precedesors let (ret_dest, ret_ty) = ret_dest_ty .expect("return destination and type not set"); base::store_ty(target, invokeret, ret_dest.llval, ret_ty); build::Br(target, postinvoketarget.llbb, debugloc); } }, (_, &mir::CallKind::DivergingCleanup(_)) | (_, &mir::CallKind::Diverging) => { build::Call(bcx, callee.immediate(), &llargs[..], Some(attrs), debugloc); build::Unreachable(bcx); } (_, k@&mir::CallKind::ConvergingCleanup { .. }) | (_, k@&mir::CallKind::Converging { .. }) => { // Bug #20046 let target = match *k { mir::CallKind::ConvergingCleanup { targets, .. } => targets.0, mir::CallKind::Converging { target, .. } => target, _ => unreachable!() }; let llret = build::Call(bcx, callee.immediate(), &llargs[..], Some(attrs), debugloc); if must_copy_dest { let (ret_dest, ret_ty) = ret_dest_ty .expect("return destination and type not set"); base::store_ty(bcx, llret, ret_dest.llval, ret_ty); } build::Br(bcx, self.llblock(target), debugloc); } } } } } fn get_personality_slot(&mut self, bcx: Block<'bcx, 'tcx>) -> ValueRef { let ccx = bcx.ccx(); if let Some(slot) = self.llpersonalityslot { slot } else { let llretty = Type::struct_(ccx, &[Type::i8p(ccx), Type::i32(ccx)], false); let slot = base::alloca(bcx, llretty, "personalityslot"); self.llpersonalityslot = Some(slot); base::call_lifetime_start(bcx, slot); slot } } fn make_landing_pad(&mut self, cleanup: Block<'bcx, 'tcx>) -> Block<'bcx, 'tcx> { let bcx = cleanup.fcx.new_block(true, "cleanup", None); let ccx = bcx.ccx(); let llpersonality = bcx.fcx.eh_personality(); let llretty = Type::struct_(ccx, &[Type::i8p(ccx), Type::i32(ccx)], false); let llretval = build::LandingPad(bcx, llretty, llpersonality, 1); build::SetCleanup(bcx, llretval); let slot = self.get_personality_slot(bcx); build::Store(bcx, llretval, slot); build::Br(bcx, cleanup.llbb, DebugLoc::None); bcx } fn unreachable_block(&mut self) -> Block<'bcx, 'tcx> { match self.unreachable_block { Some(b) => b, None => { let bl = self.fcx.new_block(false, "unreachable", None); build::Unreachable(bl); self.unreachable_block = Some(bl); bl } } } fn bcx(&self, bb: mir::BasicBlock) -> Block<'bcx, 'tcx> { self.blocks[bb.index()] } fn llblock(&self, bb: mir::BasicBlock) -> BasicBlockRef { self.blocks[bb.index()].llbb } }