// Copyright 2012-2016 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use llvm::{self, ValueRef, Integer, Pointer, Float, Double, Struct, Array, Vector, AttributePlace}; use base; use builder::Builder; use common::{type_is_fat_ptr, C_uint}; use context::CrateContext; use cabi_x86; use cabi_x86_64; use cabi_x86_win64; use cabi_arm; use cabi_aarch64; use cabi_powerpc; use cabi_powerpc64; use cabi_s390x; use cabi_mips; use cabi_mips64; use cabi_asmjs; use cabi_msp430; use cabi_sparc; use cabi_sparc64; use cabi_nvptx; use cabi_nvptx64; use machine::{llalign_of_min, llsize_of, llsize_of_alloc}; use type_::Type; use type_of; use rustc::hir; use rustc::ty::{self, Ty}; use libc::c_uint; use std::cmp; pub use syntax::abi::Abi; pub use rustc::ty::layout::{FAT_PTR_ADDR, FAT_PTR_EXTRA}; use rustc::ty::layout::Layout; #[derive(Clone, Copy, PartialEq, Debug)] enum ArgKind { /// Pass the argument directly using the normal converted /// LLVM type or by coercing to another specified type Direct, /// Pass the argument indirectly via a hidden pointer Indirect, /// Ignore the argument (useful for empty struct) Ignore, } // Hack to disable non_upper_case_globals only for the bitflags! and not for the rest // of this module pub use self::attr_impl::ArgAttribute; #[allow(non_upper_case_globals)] mod attr_impl { // The subset of llvm::Attribute needed for arguments, packed into a bitfield. bitflags! { #[derive(Default, Debug)] flags ArgAttribute : u16 { const ByVal = 1 << 0, const NoAlias = 1 << 1, const NoCapture = 1 << 2, const NonNull = 1 << 3, const ReadOnly = 1 << 4, const SExt = 1 << 5, const StructRet = 1 << 6, const ZExt = 1 << 7, const InReg = 1 << 8, } } } macro_rules! for_each_kind { ($flags: ident, $f: ident, $($kind: ident),+) => ({ $(if $flags.contains(ArgAttribute::$kind) { $f(llvm::Attribute::$kind) })+ }) } impl ArgAttribute { fn for_each_kind(&self, mut f: F) where F: FnMut(llvm::Attribute) { for_each_kind!(self, f, ByVal, NoAlias, NoCapture, NonNull, ReadOnly, SExt, StructRet, ZExt, InReg) } } /// A compact representation of LLVM attributes (at least those relevant for this module) /// that can be manipulated without interacting with LLVM's Attribute machinery. #[derive(Copy, Clone, Debug, Default)] pub struct ArgAttributes { regular: ArgAttribute, dereferenceable_bytes: u64, } impl ArgAttributes { pub fn set(&mut self, attr: ArgAttribute) -> &mut Self { self.regular = self.regular | attr; self } pub fn set_dereferenceable(&mut self, bytes: u64) -> &mut Self { self.dereferenceable_bytes = bytes; self } pub fn apply_llfn(&self, idx: AttributePlace, llfn: ValueRef) { unsafe { self.regular.for_each_kind(|attr| attr.apply_llfn(idx, llfn)); if self.dereferenceable_bytes != 0 { llvm::LLVMRustAddDereferenceableAttr(llfn, idx.as_uint(), self.dereferenceable_bytes); } } } pub fn apply_callsite(&self, idx: AttributePlace, callsite: ValueRef) { unsafe { self.regular.for_each_kind(|attr| attr.apply_callsite(idx, callsite)); if self.dereferenceable_bytes != 0 { llvm::LLVMRustAddDereferenceableCallSiteAttr(callsite, idx.as_uint(), self.dereferenceable_bytes); } } } } /// Information about how a specific C type /// should be passed to or returned from a function /// /// This is borrowed from clang's ABIInfo.h #[derive(Clone, Copy, Debug)] pub struct ArgType { kind: ArgKind, /// Original LLVM type pub original_ty: Type, /// Sizing LLVM type (pointers are opaque). /// Unlike original_ty, this is guaranteed to be complete. /// /// For example, while we're computing the function pointer type in /// `struct Foo(fn(Foo));`, `original_ty` is still LLVM's `%Foo = {}`. /// The field type will likely end up being `void(%Foo)*`, but we cannot /// use `%Foo` to compute properties (e.g. size and alignment) of `Foo`, /// until `%Foo` is completed by having all of its field types inserted, /// so `ty` holds the "sizing type" of `Foo`, which replaces all pointers /// with opaque ones, resulting in `{i8*}` for `Foo`. /// ABI-specific logic can then look at the size, alignment and fields of /// `{i8*}` in order to determine how the argument will be passed. /// Only later will `original_ty` aka `%Foo` be used in the LLVM function /// pointer type, without ever having introspected it. pub ty: Type, /// Signedness for integer types, None for other types pub signedness: Option, /// Coerced LLVM Type pub cast: Option, /// Dummy argument, which is emitted before the real argument pub pad: Option, /// LLVM attributes of argument pub attrs: ArgAttributes } impl ArgType { fn new(original_ty: Type, ty: Type) -> ArgType { ArgType { kind: ArgKind::Direct, original_ty: original_ty, ty: ty, signedness: None, cast: None, pad: None, attrs: ArgAttributes::default() } } pub fn make_indirect(&mut self, ccx: &CrateContext) { assert_eq!(self.kind, ArgKind::Direct); // Wipe old attributes, likely not valid through indirection. self.attrs = ArgAttributes::default(); let llarg_sz = llsize_of_alloc(ccx, self.ty); // For non-immediate arguments the callee gets its own copy of // the value on the stack, so there are no aliases. It's also // program-invisible so can't possibly capture self.attrs.set(ArgAttribute::NoAlias) .set(ArgAttribute::NoCapture) .set_dereferenceable(llarg_sz); self.kind = ArgKind::Indirect; } pub fn ignore(&mut self) { assert_eq!(self.kind, ArgKind::Direct); self.kind = ArgKind::Ignore; } pub fn extend_integer_width_to(&mut self, bits: u64) { // Only integers have signedness if let Some(signed) = self.signedness { if self.ty.int_width() < bits { self.attrs.set(if signed { ArgAttribute::SExt } else { ArgAttribute::ZExt }); } } } pub fn is_indirect(&self) -> bool { self.kind == ArgKind::Indirect } pub fn is_ignore(&self) -> bool { self.kind == ArgKind::Ignore } /// Get the LLVM type for an lvalue of the original Rust type of /// this argument/return, i.e. the result of `type_of::type_of`. pub fn memory_ty(&self, ccx: &CrateContext) -> Type { if self.original_ty == Type::i1(ccx) { Type::i8(ccx) } else { self.original_ty } } /// Store a direct/indirect value described by this ArgType into a /// lvalue for the original Rust type of this argument/return. /// Can be used for both storing formal arguments into Rust variables /// or results of call/invoke instructions into their destinations. pub fn store(&self, bcx: &Builder, mut val: ValueRef, dst: ValueRef) { if self.is_ignore() { return; } let ccx = bcx.ccx; if self.is_indirect() { let llsz = llsize_of(ccx, self.ty); let llalign = llalign_of_min(ccx, self.ty); base::call_memcpy(bcx, dst, val, llsz, llalign as u32); } else if let Some(ty) = self.cast { // FIXME(eddyb): Figure out when the simpler Store is safe, clang // uses it for i16 -> {i8, i8}, but not for i24 -> {i8, i8, i8}. let can_store_through_cast_ptr = false; if can_store_through_cast_ptr { let cast_dst = bcx.pointercast(dst, ty.ptr_to()); let llalign = llalign_of_min(ccx, self.ty); bcx.store(val, cast_dst, Some(llalign)); } else { // The actual return type is a struct, but the ABI // adaptation code has cast it into some scalar type. The // code that follows is the only reliable way I have // found to do a transform like i64 -> {i32,i32}. // Basically we dump the data onto the stack then memcpy it. // // Other approaches I tried: // - Casting rust ret pointer to the foreign type and using Store // is (a) unsafe if size of foreign type > size of rust type and // (b) runs afoul of strict aliasing rules, yielding invalid // assembly under -O (specifically, the store gets removed). // - Truncating foreign type to correct integral type and then // bitcasting to the struct type yields invalid cast errors. // We instead thus allocate some scratch space... let llscratch = bcx.alloca(ty, "abi_cast"); base::Lifetime::Start.call(bcx, llscratch); // ...where we first store the value... bcx.store(val, llscratch, None); // ...and then memcpy it to the intended destination. base::call_memcpy(bcx, bcx.pointercast(dst, Type::i8p(ccx)), bcx.pointercast(llscratch, Type::i8p(ccx)), C_uint(ccx, llsize_of_alloc(ccx, self.ty)), cmp::min(llalign_of_min(ccx, self.ty), llalign_of_min(ccx, ty)) as u32); base::Lifetime::End.call(bcx, llscratch); } } else { if self.original_ty == Type::i1(ccx) { val = bcx.zext(val, Type::i8(ccx)); } bcx.store(val, dst, None); } } pub fn store_fn_arg(&self, bcx: &Builder, idx: &mut usize, dst: ValueRef) { if self.pad.is_some() { *idx += 1; } if self.is_ignore() { return; } let val = llvm::get_param(bcx.llfn(), *idx as c_uint); *idx += 1; self.store(bcx, val, dst); } } /// Metadata describing how the arguments to a native function /// should be passed in order to respect the native ABI. /// /// I will do my best to describe this structure, but these /// comments are reverse-engineered and may be inaccurate. -NDM #[derive(Clone, Debug)] pub struct FnType { /// The LLVM types of each argument. pub args: Vec, /// LLVM return type. pub ret: ArgType, pub variadic: bool, pub cconv: llvm::CallConv } impl FnType { pub fn new<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, sig: ty::FnSig<'tcx>, extra_args: &[Ty<'tcx>]) -> FnType { let mut fn_ty = FnType::unadjusted(ccx, sig, extra_args); fn_ty.adjust_for_abi(ccx, sig); fn_ty } pub fn unadjusted<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, sig: ty::FnSig<'tcx>, extra_args: &[Ty<'tcx>]) -> FnType { use self::Abi::*; let cconv = match ccx.sess().target.target.adjust_abi(sig.abi) { RustIntrinsic | PlatformIntrinsic | Rust | RustCall => llvm::CCallConv, // It's the ABI's job to select this, not us. System => bug!("system abi should be selected elsewhere"), Stdcall => llvm::X86StdcallCallConv, Fastcall => llvm::X86FastcallCallConv, Vectorcall => llvm::X86_VectorCall, C => llvm::CCallConv, Unadjusted => llvm::CCallConv, Win64 => llvm::X86_64_Win64, SysV64 => llvm::X86_64_SysV, Aapcs => llvm::ArmAapcsCallConv, PtxKernel => llvm::PtxKernel, Msp430Interrupt => llvm::Msp430Intr, X86Interrupt => llvm::X86_Intr, // These API constants ought to be more specific... Cdecl => llvm::CCallConv, }; let mut inputs = sig.inputs(); let extra_args = if sig.abi == RustCall { assert!(!sig.variadic && extra_args.is_empty()); match sig.inputs().last().unwrap().sty { ty::TyTuple(ref tupled_arguments, _) => { inputs = &sig.inputs()[0..sig.inputs().len() - 1]; &tupled_arguments[..] } _ => { bug!("argument to function with \"rust-call\" ABI \ is not a tuple"); } } } else { assert!(sig.variadic || extra_args.is_empty()); extra_args }; let target = &ccx.sess().target.target; let win_x64_gnu = target.target_os == "windows" && target.arch == "x86_64" && target.target_env == "gnu"; let linux_s390x = target.target_os == "linux" && target.arch == "s390x" && target.target_env == "gnu"; let rust_abi = match sig.abi { RustIntrinsic | PlatformIntrinsic | Rust | RustCall => true, _ => false }; let arg_of = |ty: Ty<'tcx>, is_return: bool| { if ty.is_bool() { let llty = Type::i1(ccx); let mut arg = ArgType::new(llty, llty); arg.attrs.set(ArgAttribute::ZExt); arg } else { let mut arg = ArgType::new(type_of::type_of(ccx, ty), type_of::sizing_type_of(ccx, ty)); if ty.is_integral() { arg.signedness = Some(ty.is_signed()); } // Rust enum types that map onto C enums also need to follow // the target ABI zero-/sign-extension rules. if let Layout::CEnum { signed, .. } = *ccx.layout_of(ty) { arg.signedness = Some(signed); } if llsize_of_alloc(ccx, arg.ty) == 0 { // For some forsaken reason, x86_64-pc-windows-gnu // doesn't ignore zero-sized struct arguments. // The same is true for s390x-unknown-linux-gnu. if is_return || rust_abi || (!win_x64_gnu && !linux_s390x) { arg.ignore(); } } arg } }; let ret_ty = sig.output(); let mut ret = arg_of(ret_ty, true); if !type_is_fat_ptr(ccx, ret_ty) { // The `noalias` attribute on the return value is useful to a // function ptr caller. if ret_ty.is_box() { // `Box` pointer return values never alias because ownership // is transferred ret.attrs.set(ArgAttribute::NoAlias); } // We can also mark the return value as `dereferenceable` in certain cases match ret_ty.sty { // These are not really pointers but pairs, (pointer, len) ty::TyRef(_, ty::TypeAndMut { ty, .. }) => { let llty = type_of::sizing_type_of(ccx, ty); let llsz = llsize_of_alloc(ccx, llty); ret.attrs.set_dereferenceable(llsz); } ty::TyAdt(def, _) if def.is_box() => { let llty = type_of::sizing_type_of(ccx, ret_ty.boxed_ty()); let llsz = llsize_of_alloc(ccx, llty); ret.attrs.set_dereferenceable(llsz); } _ => {} } } let mut args = Vec::with_capacity(inputs.len() + extra_args.len()); // Handle safe Rust thin and fat pointers. let rust_ptr_attrs = |ty: Ty<'tcx>, arg: &mut ArgType| match ty.sty { // `Box` pointer parameters never alias because ownership is transferred ty::TyAdt(def, _) if def.is_box() => { arg.attrs.set(ArgAttribute::NoAlias); Some(ty.boxed_ty()) } ty::TyRef(b, mt) => { use rustc::ty::{BrAnon, ReLateBound}; // `&mut` pointer parameters never alias other parameters, or mutable global data // // `&T` where `T` contains no `UnsafeCell` is immutable, and can be marked as // both `readonly` and `noalias`, as LLVM's definition of `noalias` is based solely // on memory dependencies rather than pointer equality let interior_unsafe = mt.ty.type_contents(ccx.tcx()).interior_unsafe(); if mt.mutbl != hir::MutMutable && !interior_unsafe { arg.attrs.set(ArgAttribute::NoAlias); } if mt.mutbl == hir::MutImmutable && !interior_unsafe { arg.attrs.set(ArgAttribute::ReadOnly); } // When a reference in an argument has no named lifetime, it's // impossible for that reference to escape this function // (returned or stored beyond the call by a closure). if let ReLateBound(_, BrAnon(_)) = *b { arg.attrs.set(ArgAttribute::NoCapture); } Some(mt.ty) } _ => None }; for ty in inputs.iter().chain(extra_args.iter()) { let mut arg = arg_of(ty, false); if type_is_fat_ptr(ccx, ty) { let original_tys = arg.original_ty.field_types(); let sizing_tys = arg.ty.field_types(); assert_eq!((original_tys.len(), sizing_tys.len()), (2, 2)); let mut data = ArgType::new(original_tys[0], sizing_tys[0]); let mut info = ArgType::new(original_tys[1], sizing_tys[1]); if let Some(inner) = rust_ptr_attrs(ty, &mut data) { data.attrs.set(ArgAttribute::NonNull); if ccx.tcx().struct_tail(inner).is_trait() { // vtables can be safely marked non-null, readonly // and noalias. info.attrs.set(ArgAttribute::NonNull); info.attrs.set(ArgAttribute::ReadOnly); info.attrs.set(ArgAttribute::NoAlias); } } args.push(data); args.push(info); } else { if let Some(inner) = rust_ptr_attrs(ty, &mut arg) { let llty = type_of::sizing_type_of(ccx, inner); let llsz = llsize_of_alloc(ccx, llty); arg.attrs.set_dereferenceable(llsz); } args.push(arg); } } FnType { args: args, ret: ret, variadic: sig.variadic, cconv: cconv } } pub fn adjust_for_abi<'a, 'tcx>(&mut self, ccx: &CrateContext<'a, 'tcx>, sig: ty::FnSig<'tcx>) { let abi = sig.abi; if abi == Abi::Unadjusted { return } if abi == Abi::Rust || abi == Abi::RustCall || abi == Abi::RustIntrinsic || abi == Abi::PlatformIntrinsic { let fixup = |arg: &mut ArgType| { let mut llty = arg.ty; // Replace newtypes with their inner-most type. while llty.kind() == llvm::TypeKind::Struct { let inner = llty.field_types(); if inner.len() != 1 { break; } llty = inner[0]; } if !llty.is_aggregate() { // Scalars and vectors, always immediate. if llty != arg.ty { // Needs a cast as we've unpacked a newtype. arg.cast = Some(llty); } return; } let size = llsize_of_alloc(ccx, llty); if size > llsize_of_alloc(ccx, ccx.int_type()) { arg.make_indirect(ccx); } else if size > 0 { // We want to pass small aggregates as immediates, but using // a LLVM aggregate type for this leads to bad optimizations, // so we pick an appropriately sized integer type instead. arg.cast = Some(Type::ix(ccx, size * 8)); } }; // Fat pointers are returned by-value. if !self.ret.is_ignore() { if !type_is_fat_ptr(ccx, sig.output()) { fixup(&mut self.ret); } } for arg in &mut self.args { if arg.is_ignore() { continue; } fixup(arg); } if self.ret.is_indirect() { self.ret.attrs.set(ArgAttribute::StructRet); } return; } match &ccx.sess().target.target.arch[..] { "x86" => { let flavor = if abi == Abi::Fastcall { cabi_x86::Flavor::Fastcall } else { cabi_x86::Flavor::General }; cabi_x86::compute_abi_info(ccx, self, flavor); }, "x86_64" => if abi == Abi::SysV64 { cabi_x86_64::compute_abi_info(ccx, self); } else if abi == Abi::Win64 || ccx.sess().target.target.options.is_like_windows { cabi_x86_win64::compute_abi_info(ccx, self); } else { cabi_x86_64::compute_abi_info(ccx, self); }, "aarch64" => cabi_aarch64::compute_abi_info(ccx, self), "arm" => { let flavor = if ccx.sess().target.target.target_os == "ios" { cabi_arm::Flavor::Ios } else { cabi_arm::Flavor::General }; cabi_arm::compute_abi_info(ccx, self, flavor); }, "mips" => cabi_mips::compute_abi_info(ccx, self), "mips64" => cabi_mips64::compute_abi_info(ccx, self), "powerpc" => cabi_powerpc::compute_abi_info(ccx, self), "powerpc64" => cabi_powerpc64::compute_abi_info(ccx, self), "s390x" => cabi_s390x::compute_abi_info(ccx, self), "asmjs" => cabi_asmjs::compute_abi_info(ccx, self), "wasm32" => cabi_asmjs::compute_abi_info(ccx, self), "msp430" => cabi_msp430::compute_abi_info(ccx, self), "sparc" => cabi_sparc::compute_abi_info(ccx, self), "sparc64" => cabi_sparc64::compute_abi_info(ccx, self), "nvptx" => cabi_nvptx::compute_abi_info(ccx, self), "nvptx64" => cabi_nvptx64::compute_abi_info(ccx, self), a => ccx.sess().fatal(&format!("unrecognized arch \"{}\" in target specification", a)) } if self.ret.is_indirect() { self.ret.attrs.set(ArgAttribute::StructRet); } } pub fn llvm_type(&self, ccx: &CrateContext) -> Type { let mut llargument_tys = Vec::new(); let llreturn_ty = if self.ret.is_ignore() { Type::void(ccx) } else if self.ret.is_indirect() { llargument_tys.push(self.ret.original_ty.ptr_to()); Type::void(ccx) } else { self.ret.cast.unwrap_or(self.ret.original_ty) }; for arg in &self.args { if arg.is_ignore() { continue; } // add padding if let Some(ty) = arg.pad { llargument_tys.push(ty); } let llarg_ty = if arg.is_indirect() { arg.original_ty.ptr_to() } else { arg.cast.unwrap_or(arg.original_ty) }; llargument_tys.push(llarg_ty); } if self.variadic { Type::variadic_func(&llargument_tys, &llreturn_ty) } else { Type::func(&llargument_tys, &llreturn_ty) } } pub fn apply_attrs_llfn(&self, llfn: ValueRef) { let mut i = if self.ret.is_indirect() { 1 } else { 0 }; if !self.ret.is_ignore() { self.ret.attrs.apply_llfn(llvm::AttributePlace::Argument(i), llfn); } i += 1; for arg in &self.args { if !arg.is_ignore() { if arg.pad.is_some() { i += 1; } arg.attrs.apply_llfn(llvm::AttributePlace::Argument(i), llfn); i += 1; } } } pub fn apply_attrs_callsite(&self, callsite: ValueRef) { let mut i = if self.ret.is_indirect() { 1 } else { 0 }; if !self.ret.is_ignore() { self.ret.attrs.apply_callsite(llvm::AttributePlace::Argument(i), callsite); } i += 1; for arg in &self.args { if !arg.is_ignore() { if arg.pad.is_some() { i += 1; } arg.attrs.apply_callsite(llvm::AttributePlace::Argument(i), callsite); i += 1; } } if self.cconv != llvm::CCallConv { llvm::SetInstructionCallConv(callsite, self.cconv); } } } pub fn align_up_to(off: usize, a: usize) -> usize { return (off + a - 1) / a * a; } fn align(off: usize, ty: Type, pointer: usize) -> usize { let a = ty_align(ty, pointer); return align_up_to(off, a); } pub fn ty_align(ty: Type, pointer: usize) -> usize { match ty.kind() { Integer => ((ty.int_width() as usize) + 7) / 8, Pointer => pointer, Float => 4, Double => 8, Struct => { if ty.is_packed() { 1 } else { let str_tys = ty.field_types(); str_tys.iter().fold(1, |a, t| cmp::max(a, ty_align(*t, pointer))) } } Array => { let elt = ty.element_type(); ty_align(elt, pointer) } Vector => { let len = ty.vector_length(); let elt = ty.element_type(); ty_align(elt, pointer) * len } _ => bug!("ty_align: unhandled type") } } pub fn ty_size(ty: Type, pointer: usize) -> usize { match ty.kind() { Integer => ((ty.int_width() as usize) + 7) / 8, Pointer => pointer, Float => 4, Double => 8, Struct => { if ty.is_packed() { let str_tys = ty.field_types(); str_tys.iter().fold(0, |s, t| s + ty_size(*t, pointer)) } else { let str_tys = ty.field_types(); let size = str_tys.iter().fold(0, |s, t| { align(s, *t, pointer) + ty_size(*t, pointer) }); align(size, ty, pointer) } } Array => { let len = ty.array_length(); let elt = ty.element_type(); let eltsz = ty_size(elt, pointer); len * eltsz } Vector => { let len = ty.vector_length(); let elt = ty.element_type(); let eltsz = ty_size(elt, pointer); len * eltsz }, _ => bug!("ty_size: unhandled type") } }